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In the world of discrete mathematics, we encounter a bewildering variety of topics 
with no apparent connection between them. But appearances are deceptive. 

For example, combinatorics tells us about difference sets, block designs, and triple 
systems. Geometry leads us to finite projective planes and Latin squares. Graph theory 
introduces us to round-robin tournaments and map colorings, linear algebra gives us 
(0, I)-matrices, and quadratic residues are among the many pearls of number theory. 
We meet the torus, that topological curiosity, while visiting the local doughnut shop or 
tubing down a river. Finally, in these fields we encounter such names as Euler, Fano, 
Fischer, Hadamard, Heawood, Kirkman, Singer and Steiner. 

This is a story about a single object that connects all of these. 
Commonly known as (7 , 3 , 1) , it is all at once a difference set, a block design, 

a Steiner triple system, a finite projective plane, a complete set of orthogonal Latin 
squares, a doubly regular round-robin tournament, a skew-Hadamard matrix, and a 
graph consisting of seven mutually adjacent hexagons drawn on the torus. 

We are going to investigate these connections. Along the way, we' ll learn about all 
of these topics and just how they are tied together in one object-namely, (7 , 3 , 1) . 
We'll learn about what all of those people have to do with it. We' ll get to know this 
object quite well ! 

So let's find out about the many names of (7 , 3 , 1) . 

Combinatorial designs 

The first place we meet (7 , 3 , 1) is in the set Q7 = {1, 2, 4} . These are the nonzero 
perfect squares (mod 7), and their six nonzero differences, 1 - 2, 1 - 4, 2 - 4, 2 - 1, 
4 - 1, and 4 - 2, yield each of the six distinct nonzero residues (mod 7) exactly once. 
Notice that Q7 is a collection of 3 numbers mod 7, such that every nonzero integer 
mod 7 can be represented in exactly one way as a difference (mod 7) of distinct ele
ments of Q7. More generally, a (v , k, A.) difference set is a set S of k nonzero integers 
mod v such that every nonzero integer n mod v can be represented as a difference of 
elements of S in exactly A. different ways. Thus, Q7 is a (7 , 3 , 1) difference set; from 
here on, we' ll usually call it (7 , 3 , 1) . 

Difference sets have been the objects of a great deal of attention over the years, 
even before Singer constructed many families of them in his fundamental paper [18] . 
The first one students usually meet is (7 , 3 , 1) (or, rather, Q7) . We notice that Qn = 
{1, 3 , 4, 5 ,  9} is a (11, 5 ,  2) difference set, since each nonzero number mod 11 can be 
written as a difference of elements of Qn in exactly two ways (try it), and 

Q47 = {1, 2, 3 , 4, 6, 7 , 8 , 9 , 12, 14, 16, 17 , 18 , 21, 24, 25 , 27 , 28,32, 34, 36, 37, 42} 

is a (47 , 23 , 11) difference set (oh, go ahead and try it) . 
There's  a pattern here: Qn and Q47 are the nonzero squares mod 11 and 47, re

spectively, and this is no accident. It is not too tough to prove that the nonzero squares 
mod p form a difference set, where p = 4n + 3 is a prime. All we need are a few 
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facts about numbers, but first let u s  set some notation. Let p be a prime number; write 
[l. .n] to mean the set {1, . . .  , n } .  Write a= b mod p to mean that a - b is an integral 
multiple of p, and call a a square mod p when there exists an x with x2 = a  mod p. 
Let z; denote the nonzero integers mod p, let Qp denote the nonzero squares mod p, 
and let GCD(n ,  k) denote the greatest common divisor of n and k.  

Here are the facts, with some (hints) about how to verify them: 

• z; is a group under multiplication mod p. (The multiples of p form a subgroup of 
the integers, and Zp is the resulting quotient group.) 

• The squares in z; are a subgroup of z;. (The squares are closed under multiplica
tion, and z; is a finite group.) 

• The product of a square and a nonsquare mod p is a nonsquare mod p, and the 
product of two nonsquares mod p is a square mod p. (The squares and nonsquares 
are the two cosets in z; mod the subgroup of squares.) 

• If p = 4n + 3 ,  then - 1  is not a square mod p. (The key here is Lagrange's Theo
rem.) 

• If GCD(a , p) = 1, then multiplication by a permutes the elements of z;. (If 
GCD(a , p) = 1 and ax = ay mod p, then x = y mod p.) 

THEOREM 1 .  Let p = 4n + 3 be a prime. Then the nonzero squares mod p form a 
( 4n + 3 , 2n + 1 ,  n) difference set. 

Proof For convenience, by a square (respectively, nonsquare) we will mean a 
member of Qp (respectively, a member of z; - Qp). Let x E [l. .p  - 1 ] .  Since 
x ¢ 0 mod p, it follows that x has an inverse in Z; ; denote this inverse by x _,. (For 
example, if p = 19, then 7- 1 = 1 1  because 7 . 1 1  = 77 = 1 mod 19.) 

Now let R be the set of pairs of squares, that is, let R := { (a , b) E [l. .p - 1 ] :  a and 
b are squares, a=!= b} . We say that the pair (a , b) represents x if a - b = x (modp) ;  
write N(x) to mean the number of pairs in R that represent x .  Define the map ax on 
ordered pairs mod p by 

_ { (x- 1a , x-' b) ,  ax(a , b) - ( _1 b _1 ) -x , -x a , 
if x is a square; 
if x is a nonsquare. 

For example, both 5 and 6 are squares mod 19 and 7 is a nonsquare mod 19; if x = 7, 
then we have 

a7(5, 6) = (-T1 · 6, -T1 
• 5) = (- 1 1 · 6, - 1 1 · 5) = ( 10, 2) , 

all arithmetic being done mod 19. 
The first thing to observe is that if (a , b) represents x ,  then ax(a, b) represents 1 .  

For, if a - b = x (modp) ,  then x-' a - x-' b  = x-' (a - b) = x-' x  = 1 (mod p) . 
Also, -x-' b - (-x- 1a) = x-1 (a - b)= 1 (mod p) . Now if x is a square, then x-' a  
and x-' b  are both squares, and so (x-' a , x- 1 b) represents 1 .  If x is a nonsquare, 
then-x - 1 is a square, so -x-' b  and -x-' a  are squares, and (-x-' b , -x- 1a) repre
sents 1 .  Thus, every representation of x leads to a representation of 1 .  

On the other hand, ax-1 is an inverse map of ax, so that if (c, d )  represents 1 ,  then 
ax-I (c, d) represents x .  Thus, for all x ,  every representation of 1 leads to a represen
tation of x .  

We conclude that N(x ) = N(l ) for all x E [l. .p  � 1 ] ,  and so every x E [l. .p - 1 ]  
has the same number of representations. This lets u s  count R: it contains N(l) · (p-
1 )  = N(1 )  · (4n + 2) pairs. 
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Finally, since multiplication by - 1  permutes z; and exchanges the squares and 
nonsquares, there are 2n + 1 = (p - 1 ) /2 squares mod p ;  hence, R contains (2n + 
1 )2n = P�1 ( P�1 

- 1 )  pairs (there are no pairs (a , a)) .  Equating these two values for 
the size of R, we see that N(l) = (2n + 1 )2n/ (4n + 2) = n .  Hence, every nonzero 
integer mod p = 4n + 3 is represented n times by a difference of nonzero squares 
mod p-that is, the nonzero squares form a (4n + 3, 2n + 1 ,  n) difference set. • 

There are many other classes of difference sets. For example, B13 = {0, 1 ,  3 ,  9} is 
a difference set with v = 13, and B37 = { 1 ,  7 ,  9, 10, 12 , 16, 26, 33, 34} is a difference 
set with v = 37. (As an exercise, verify these statements and in so doing, determine k 
and).. for each. Question: Except for 0, B13 looks like the powers of 3 mod 1 3 ;  is there 
a similar pattern for B37 ?) 

As we have seen, { 1 ,  2, 4} is a (7, 3 ,  1 )  difference set. But so is any additive shift 
{ 1  + n , 2 + n , 4 + n } (mod 7) of { 1 ,  2, 4} . Consider all seven of these sets together; 
writing abc for the set {a , b , c } ,  we have 

124, 235 ,  346, 450, 561 ,  602, and 0 13 .  ( 1 )  

This i s  well illustrated by rotating the triangle in FIGURE 1 counterclockwise within 
its circumscribing circle: 

2 

6 

Figure 1 The (7, 3, 1) d i fference set 

0 

Notice that for these 7 sets (or blocks), whose elements are taken from a 7-element 
set, namely [0 . .  6] , each element appears in 3 blocks, each block has 3 elements, and 
each pair of elements appears together in exactly one block. The difference sets in this 
section give rise to some special classes of what are called block designs, and some 
more names for (7 , 3, 1 ) .  So let's talk about block designs. 

A balanced incomplete block design, or BIBD with parameters b, v,  r, k, and).. is an 
arrangement of b blocks, taken from a set of v objects (known for historical reasons as 
varieties), such that every variety appears in exactly r blocks, every block contains ex
actly k varieties, and every pair of varieties appears together in exactly ).. blocks. Such 
an arrangement is also called a (b , v ,  r, k, )..) design. Thus, (7 , 3, 1) is a (7 , 7, 3, 3, 1 )  
design. Block designs appeared in  connection with the eminent British statistician 
R. A. Fisher's work on the statistical design of agricultural experiments ( [7] , [8]), 
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and the first comprehensive mathematical study of the field was due to R. C. Bose [2] . 
Now, the five parameters are by no means independent, for it turns out that bk = vr 
and r (k - 1 )  = A.(v - 1 )  (exercise: prove it) . Hence, a (b , v, r, k ,  A.) design is really a 
(A.v(v - 1 ) / (k(k - 1 ) ) ,  v, A.(v - 1 ) / (k - 1 ) ,  k ,  A.) design. If b = v (and hence r = k), 
the design is said to be symmetric; thus, (7 , 3, 1) is a (7 , 3, 1) symmetric design. 

The familiar 3 x 3 magic square (see FIGURE 2, on the right), in which the rows, 
columns, and main diagonals all add up to 1 5 , is the source of another block design. 

1 2 3 
4 5 6 
7 8 9 

4 9 2 
3 5 7 
8 1 6 

Figure 2 Generati ng  a des ign  from a 3 x 3 magic square 

Here's how it works: first, arrange the integers from 1 to 9 in that order in a 3 x 3 
grid-see FIGURE 2, on the left. Allowing diagonals to wrap when they reach the edge 
of the grid (as if there were another copy of the grid next door) yields twelve 3-element 
sets: three rows, three columns, and six diagonals. Thus, we have 9 objects arranged 
in 12  blocks with each object in four blocks, each block containing three objects and 
each pair of objects in one block-in short, a ( 1 2 , 9, 4, 3 ,  1 )  design. Here are the blocks: 

123 , 456, 789, 147 , 258, 369, 168 , 249 , 357, 1 59, 267 , 348. 

Now we have already seen that the seven additive shifts (mod 7) of our (7 , 3, 1 )  
difference set form the blocks of a (7 , 3 ,  1 )  symmetric design. In addition, the eleven 
additive shifts (mod 1 1 ) of our ( 1 1 , 5 ,  2) difference are the blocks of a symmetric 
( 1 1 ,  5 ,  2) design (see for yourself). It turns out that this is the case in general, and we 
can prove it. 

THEOREM 2. Let D = {x1, x2, ... , Xk } be a (v, k, A.) difference set. Let B; := 
{x1 + i, ... , xk + i }  where addition is mod v. Then the v sets B0, • • •  , Bv-l are the 
blocks of a (v, k, A.) symmetric design. 

Proof By definition, there are v blocks and v varieties. By construction, there are 
k varieties in each block. In addition, since y = Xj + (y - Xj) for 1 :::;: j :::;: k, each 
y E [O . .  v - 1 ]  appears in blocks By-xp ... , By-xk· Hence each variety appears in k 
blocks. Finally, let y ,  z E [O . .  v - 1 ] ;  then y and z are in B1 if and only if t = y - x; = 
z - Xj for distinct i ,  j E [l. .k] .  This happens if and only if y- z = x; - Xj; since D 
is a (v, k ,  A.) difference set, this happens for exactly A. pairs (x;, Xj). Thus, there are 
exactly A. values of t for which t = y - x; = z - Xj for distinct i , j E [l. .k] , and for 
these values, y and z appear together in a block. • 

You may wonder whether the converse of this theorem is also true-that is, does ev
ery (v, k ,  A.) symmetric design give rise to a (v, k ,  A.) difference set? Interesting ques
tion: we'll come back to it later. 

Finally, a class of block designs that has attracted considerable interest over the 
years is the one for which k = 3 and A. = 1 .  Such a design is called a Steiner triple 
system on v varieties, or STS(v) for short. Since (7 , 3, 1) certainly has k = 3,  it is also 
an STS-in fact, the smallest nontrivial Steiner triple system. Now if an STS( v) exists, 
then v = 1 or 3 (mod 6), which follows from the fact that a (b , v, r, 3, 1) design is 
really a (A.v(v - 1)/ (3 · 2) , v, (v - 1 )/2, 3, 1) design. (You can work this one out!) 

Steiner posed the problem of showing that triple systems exist for all such v :::: 3 ,  
but he did not solve it. In  fact, the problem had been solved more than a decade earlier 
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by the Reverend Thomas A. Kirkman [11]-see Doyen's survey article [5] for a great 
deal more about these triple systems. (Perhaps they should be renamed in honor of 
Kirkman, about whom more later.) 

Steiner triple systems turn up in some unlikely places, such as subfield diagrams in 
algebraic number theory_.:.but that's  another story. 

Since the 3 x 3 magic square is a ( 1 2 , 9, 4, 3 ,  1 )  design, it is also an STS(9). But 
it is more than that: the words magic square suggest some connection with geometry. 
Curiously enough, it turns out that (7 , 3 ,  1 )  has geometric connections as well. So, let's 
talk about finite geometries. 

Finite geometries 

The 3 x 3 magic square we met in the previous section (FIGURE 2 on the left) is an 
example of a finite geometry. For, if by a line, we mean a set of points-not necessarily 
connected, straight, or infinite-then the 3 x 3 magic square obeys some fairly simple 
rules: 

(1) Each pair of points lies on a unique line. 

(2) Each pair of lines intersects in at most one point. 

(3) There exist four points with no three on a line. 

The first two rules are reminiscent of Euclidean plane geometry, and the third en
sures that the object at hand is nontrivial. Arrangements that satisfy these three rules 
are called.finite affine planes, and the number of points on each line is called the order 
of the plane. Thus, the 3 x 3 magic square gives rise to a finite affine plane (FAP) of 
order 3 .  

We cannot draw a picture of  this in the plane without two pairs of  lines crossing 
unnecessarily, but we can draw it on a torus-the surface of a doughnut-by wrapping 
the diagonals. See FIGURE 3, where solid lines represent the lines of this finite plane, 
and dotted lines indicate wrapping on the torus. 

e I e e e e 
I 
I I --�-----------------,---
1 I 
I I 
I I 
I I 
I I 

• 

I 
I 
I 
I 

I I 

• 

--- r -----------------r--
1 I 

e I ' e e I e 

Figure 3 The fi n ite affi ne  p lan e  of order 3 



88 MATH EMATICS MAGAZI N E  

Here's a question: What i s  the smallest possible finite plane? We need at least four 
points with no three on a line; if we call the points A,  B ,  C, and D, then the six lines 
AB ,  AC, AD,  BC, B D, and CD form a perfectly good finite plane. Now in our affine 
planes, some of the lines intersect and some of them do not. 

But what if we insisted that the plane be projective, that is, that every pair of lines 
have a unique point in common? What is the smallest possible finite projective plane 
(FPP)? 

Let's  add some points to the plane above. Clearly, A B  and CD must meet in some 
point X, AC and B D  meet in some point Y ,  and A D  and BC meet in some point Z. 
If X =  Y, then A, B, and X are on a line, and B, D, and X (= Y) are on a line. But 
B and X determine a unique line, so that A, B, and D are on a line-contrary to 
assumption. Hence, X =/= Y. For the same reason, X =/= Z and Y =/= Z. 

We know that an FPP contains at least seven points, and so far, it contains the six 
lines ABX,  CDX, ACY, B D Y ,  A DZ, and BCZ. There must be a line through X 
and Y .  To keep things small, we add the line X Y Z (represented by the circle on the 
left in FIGURE 4); then each pair of lines intersects in a unique point. The resulting 
seven-point FPP is known as the Fano plane; here it is on the left in FIGURE 4: 

Figure 4 The Fano p lane  

1 

Notice that the Fano plane has seven points and seven lines; each line contains three 
points, each point is on three lines and each pair of points is on exactly one line. Sound 
suspiciously familiar? It should, for if we replace A, B, C, D, X, Y, and Z with 0, 1 ,  
2 ,  5 ,  3 ,  6 ,  and 4 ,  respectively, the lines look like this :  

1 24,  235,  346, 450, 561 , 602, and 0 13 ,  

and (7 , 3 ,  1 )  has reappeared-on the right in  FIGURE 4--as the Fano plane. This con
figuration was named for G. Fano, who described it in 1 892 [6] . In another twist of 
fate, however, he was anticipated by Woolhouse in 1 844 [20] and, yes, by Kirkman in 
1 850 [12] . 

More generally, a .finite projective plane of order n ,  abbreviated FPP(n), is an FPP 
containing n2 + n + 1 points and n2 + n + 1 lines, such that every point is on n + 1 
lines, every line contains n + 1 points, and every pair of points is on a unique line. 
Thus, an FPP(n) is an (n2 + n + 1 ,  n + 1 ,  1) symmetric design; conversely, every 
(v, k ,  1 )  design is a finite projective plane of order n = k - 1 with v = n2 + n + 1 .  

One of the major unsolved problems in combinatorics is determining the values of 
n for which an FPP(n) exists . Their existence is equivalent to the existence of certain 
families of designs called Latin squares, designs that got mixed up with one of the 
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most famous false conjectures in the history of mathematics. So let's talk briefly about 
them now. 

A Latin square of order n is an n x n array with entries from the set [l. .n] such 
that each element of [l. .n]  appears in each row and each column of the array exactly 
once. Two Latin squares A= [aij ] and B = [bij ] of order n are said to be orthogonal 
if the n2 ordered pairs (a;j , b;j ) are distinct. (A good reference for the general subject 
of Latin squares is a text by Denes and Keedwell [4] .) Here are three Latin squares of 
order 4; you can check that (a) they are Latin squares and (b) they are orthogonal in 
pairs : [ 1 2 3 4 ] 

2 1 4 3 
3 4 1 2 
4 3 2 1 

[ 1 3 4 2 ] 
2 4 3 1 
3 1 2 4 
4 2 1 3 

[ 1 4 2 3 ] 
2 3 1 4 
3 2 4 1 
4 1 3 2 

It turns out that the existence of this trio of pairwise orthogonal Latin squares of 
size 4 is equivalent to the existence of a finite projective plane of order 4; in fact, this 
is true in general: 

THEOREM 3 .  Let n be an integer greater than 1. Then there exists a finite projective 
plane of order n if and only if there exists a set of n - 1 Latin squares of size n that 
are pairwise orthogonal. 

An outline of the proof is given in a text by Roberts [16]-who also shows that if n is 
a prime power, then there exists a set of n - 1 Latin squares of size n that are pairwise 
orthogonal. Hence, FPP's exist for orders 2, 3, 4, 5, 7, 8, and 9. In particular, (7 , 3, 1 )  
i s  a FPP(2) and so  there must be a corresponding set of  n - 1 pairwise orthogonal 
Latin squares of size n = 2. And what is that set? You can figure it out, or I ' ll tell you 
later. 

So 2, 3, 4, 5, 7, 8, and 9 are all just fine. But what about order 6? 
The great Leonhard Euler wondered about 6, too. That prodigious mathematical 

mind from the eighteenth century made a study of Latin squares, showed how to con
struct a pair of size n if n is not of the form 4k + 2, and saw immediately that it is 
impossible to construct a pair of orthogonal Latin squares of size 2 (try it) . He then 
attempted to construct a pair of size 6; failing to do so, he made the following bold 
conjecture: 

EULER' S CONJECTURE ( 1 7 8 2 ) .  For each nonnegative integer k, there does not 
exist a pair of orthogonal Latin squares of size 4k + 2. 

For over 100 years, nothing happened. Then, in 1900, G. Tarry wrote two pa
pers [19] proving that Euler was right about 6. But as Bose, Shrikhande, and Parker [3] 
showed in 1960, he was spectacularly wrong for all other values of 4k + 2 greater 
than 6:  

THEOREM 4 .  There exists a pair of orthogonal Latin squares of order n for all 
n > 6. 

It is now known (the details are in a nice survey by Lam [13]) that an FPP(lO) does 
not exist; the smallest unknown case is for n = 12 .  So we see that (7 , 3 ,  1 )  is connected 
with one of the rare instances in which Euler was almost totally wrong! 

It happens that (7 , 3 ,  1 )  has connections, not only with combinatorics, but also with 
that other major branch of discrete mathematics: graph theory. So let's talk about graph 
theory. 
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Graph theory connections 

A graph G is a set of points (or vertices) V (G) together with a set of lines (or edges) 
E(G) joining some (perhaps all, perhaps none) of the points . We say that the vertices 
a and b are adjacent if the edge ab is in the graph. A graph is complete if there is 
an edge between every pair of points. Graphs can be directed, that is, each edge is 
assigned a direction: we write (a , b) if there is an edge directed from a to b. Graphs 
model an amazing number of problems, from simple word puzzles (the Wolf-Goat
Cabbage problem) and games (Tic-Tac-Toe and chess) to such complex systems as 
the continental power grid and the internet. Directed graphs can model the play of 
teams in a league, and that is where (7 , 3 ,  1 ) comes in. 

In many sports leagues, each team plays every other team exactly once, and there 
are no ties. We can model this scenario with a graph as follows.  The teams are the 
vertices, and for each pair of teams u and v, include the edge (u , v) directed from 
u to v if u beats v, and include the edge (v, u) if v beats u .  We call such a graph 
a (round-robin) tournament; thus, a tournament is a complete graph with a direc
tion assigned to each edge. (A good reference on tournaments is Moon's book [14] .) 
The score of a vertex u is the number of edges (u , v) in the tournament. A tour
nament is called transitive if every team has a different score, and regular if every 
team has the same score. Naturally, the higher the score, the higher the team's rank. 
Thus, in a transitive tournament, the scores determine the ranking unambiguously, and 
in a regular tournament, the scores don't give any information. (A transitive tourna
ment is so named because it has the property that if u beats v and v beats w, then u 
beats w.)  

Now, the high schools of  Auburn, Blacksburg, Christiansburg, EastMont, Giles, 
Newman, and Radford make up the Riverside League. In most years, one or two 
schools dominate, but last year the results of the league's round-robin play were quite 
different: 

Team 

Auburn 
Blacksburg 
Christiansburg 
EastMont 
Giles 
Newman 
Radford 

Victories Over 

Blacksburg, Giles, Radford 
Christiansburg, Giles, Newman 
Auburn, Newman, Radford 
Auburn, Blacksburg, Christiansburg 
Christiansburg, EastMont, Radford 
Auburn, Giles, EastMont 
Blacksburg, EastMont, Newman 

Each team had the same score of 3, so this was a regular tournament. But the league 
was even more balanced than that: each pair of teams was victorious over exactly one 
common opponent. (Such a tournament is called doubly regular.) Let us look at this a 
little more carefully, assigning numbers to the teams as follows: A = 3, B = 0, C = 1 ,  
E = 6 ,  G = 4 ,  N = 2 ,  and R = 5 .  If we now rewrite the results in numerical order, 
the table of victories begins to look somewhat familiar: 
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Team 

0 
1 
2 
3 
4 
5 
6 

Victories Over 

1 , 2 , 4 
2 , 3 , 5 
3 , 4 , 6 
4, 5 , 0 
5 , 6, 1 
6, 0, 2 
0, 1 , 3 

9 1  

Our old friend (7 , 3 ,  1 )  has reappeared: the sets of teams defeated by each member 
of the league are the blocks of a (7 , 3 , 1 )  symmetric design, and the teams defeated by 
Team 0 form a (7 , 3 , 1 )  difference set. 

Of course, this is no accident-and we can prove it. 

THEOREM 5 .  Let p = 4n + 3 be a prime. Define the tournament T by V (T) = 
[O . .  p - 1 ]  and E(T) = { (x , x + r ) :  r is a square mod p} .  Then T is a doubly regular 
tournament with 4n + 3 vertices, in which every vertex has a score of2n + 1 and every 
pair of vertices defeats n common opponents. 

Proof Since there are (p - 1 )/2 = 2n + 1 squares mod p, each vertex has a score 
of 2n + 1 .  Now let x , y be distinct vertices. Then (x , z) and (y , z) are both edges of T 
if and only if there exist distinct squares r and s such that z - x = r and z - y = s .  
Hence, the number of such z i s  equal to the number of pairs of distinct squares r, s such 
that r - s = x - y. But the squares form a (4n + 3 , 2n + 1 , n) difference set, and so 
the nonzero number x - y can be written as a difference r - s in exactly n distinct 
ways. Hence, there are n vertices z such that both (x , z) and (y , z) are edges of T ,  that 
is, T is doubly regular. • 

In short, (7 , 3 , 1 )  is a doubly regular tournament. 
Now, the adjacency matrix of a tournament T on v vertices x1 , • • .  , Xv is a v x v 

matrix A = [ Aij] such that A;j = 1 if there is an edge from x; to x j, and A;j = 0 
otherwise. Thus, the (7 , 3 , 1 )  doubly regular tournament has the following adjacency 
matrix A: 

0 1 1 0 1 0 0 
0 0 1 1 0 1 0 
0 0 0 1 1 0 1 

A= 1 0 0 0 1 1 0 
0 1 0 0 0 1 1 
1 0 1 0 0 0 1 
1 1 0 1 0 0 0 

1 1 1 1 1 1 1 1 
1 - 1  1 1 - 1  1 - 1  - 1  
1 - 1  - 1  1 1 - 1  1 - 1  

H= 
1 - 1  - 1  - 1  1 1 - 1  1 
1 1 - 1  - 1  - 1  1 1 - 1  
1 - 1  1 - 1  - 1  - 1  1 1 
1 1 - 1  1 - 1  - 1  - 1  1 
1 1 1 - 1  1 - 1  - 1  - 1  
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If we replace all the Os  in A with - 1  s and border the resulting matrix top and left 
with a row and column of 1 s, we obtain the above matrix H. If we multiply H by its 
transpose HT, it turns out that H HT = 8/ ,  where I is the 8 x 8 identity matrix. An 
n x n matrix H of Os and Is for which H HT = nl  is called a Hadamard matrix of 
order n-not a property enjoyed by very many ( - 1 , I)-matrices. It turns out that the 
adjacency matrix of every doubly regular tournament can be transformed into a skew
Hadamard matrix (one for which H + HT = 2/) , and every skew-Hadamard matrix 
gives rise to a doubly regular tournament [15]. 

Hadamard matrices are very useful in constructing error-correcting codes and other 
combinatorial designs. You can show that if H is a Hadamard matrix of order n > 1 ,  
then either n = 2 or n = 0 mod 4 .  Whether the converse is true is an unsolved problem. 

More graph theory connections 

The final two (7 , 3 , 1 )  connections turned up in my course in Galois theory, that beau
tiful subject in which Evariste Galois ( 1 8 1 1-1 832) related the roots of polynomials to 
number fields and finite groups. One basic idea is that if p (x) is a polynomial with 
rational coefficients, then there is a smallest subfield L (p) of the complex numbers C 
containing both the rationals Q and all the roots of p (x) .  This is the splitting field of 
p over Q. If a , b, . . .  E C and if K is a subfield of C, write K(a , b, . . .  ) to mean the 
smallest subfield of C containing K and a , b, . . . .  

For the polynomial p(x) = (x2 - 2) (x2 - 3) (x2 - 5) ,  it turns out that L (p) = 
Q( J2, J3, -JS). Now this field contains, besides itself and Q, fourteen other sub
fields which-to my great delight-form a (7 , 3 , 1 )  design. For this particular incar
nation of (7 , 3 , 1 ) ,  the varieties are the seven quadratic subfields Q(J(i), where d E  
{2 , 3 , 5 , 6 , 10 ,  1 5 , 30}, and the blocks are the seven biquadratic subfields Q(y'd;, J{[;) 
(where d1d2 is not a perfect square). See for yourself: 

Biquadratic Field 

Q(J2, J3) 
Q(J3, -vis) 
Q(-vls, �) 
Q(�. �/i5) 
Q(v'IS, J30) 
Q( J30, M) Q(.JIO, J2) 

Contains Q( Jd) 
for these d 
2, 3 , 6  
3 , 5 , 1 5  
5 , 6 , 30 
6, 1 5 , 1 0  
1 5 , 30, 2 
30, 10, 3 
10, 2 , 5 

In short, (7 , 3 , 1 )  appears in the subfields of the splitting field of a polynomial. 

But there's one more connection. If we join two subfields of L by a line if one 
contains the other and there is no intermediate field, we get the lattice of subfields 
of L .  For our field L (p) , if we do this and ignore L (p) and Q, the left side of FIGURE 5 
shows what we get. 

This is the (3 , 6) cage: every vertex has degree 3, the shortest cycle has length 6, 
and no graph with fewer vertices has these properties . The (3 , 6) cage cannot be drawn 
in the plane without edges crossing. It can, however, be drawn on the torus, and the 
right side of FIGURE 5 shows what that looks like. 
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Figure 5 The Heawood graph 
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This toroidal embedding is what gives the graph its common name: the Heawood 
graph. For, in 1 890, Percy J. Heawood proved that every graph that can be drawn on 
the torus without edges crossing requires at most seven colors to color its regions with 
neighboring regions having different colors . The Heawood graph was his example 
of a toroidal graph requiring seven colors, for it consists of seven mutually adjacent 
hexagons.  

With that, we see how (7 , 3 ,  1 )  has a connection with Heawood's 7-Color Theorem 
for toroidal graphs, and with the Heawood graph-just one more of the many names 
of (7 , 3 ,  1 ) .  

Questions 

Does (7, 3, 1) have any other names? Yes, it does. There is a combinatorial design 
called a (3 , 4, 7, 2) configuration of size 14; it consists of fourteen 3-element subsets 
of [ 1 . .7] ,  no more than two of which lie in a common 4-element subset of [ 1 . .7 ] .  
The incidence graph of this design (two 3-sets are joined if  and only if  they lie in a 
common 4-set) is the Heawood graph. To find more names, Richard Guy's paper [9] is 
an excellent place to start. 

Where can I find out more about difference sets? One of the best places to begin 
is with H. J. Ryser's beautifully written book [17] , which will take you a fair way into 
the subject. Two others are the more recent book by Beth, Jungnickel, and Lenz [1] and 
Marshall Hall's classic [10] , both of which will take you as far as you want to go into 
the subject. All three of these also give good introductions to the other combinatorial 
designs talked about here. 

Do all (v, k, A) symmetric designs give rise to (v, k, A) difference sets? In fact, 
they don' t-but the smallest example is (v, k, A.) = (25 , 9 , 3) . Exercise : Find it. 

How did Tarry prove that there does not exist a pair of orthogonal Latin squares 
of size 6? Brute force.  He used symmetry arguments to reduce the number of cases 
to about six thousand-then eliminated them, one by one. (Don't  try this at home.) 
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What is the complete set of orthogonal Latin squares that corresponds to (7, 3 ,  1)? 
We know that (7 , 3 , 1) is also an FPP of order n = 2, so the corresponding set of 
n - 1 = 1 orthogonal Latin square(s) of size 2 is just 

A = { [ � i]}· 
Did the Reverend Thomas Kirkman ever get credit for anything? Yes, he did. In 
1 850, he posed what is known as Kirkman's Schoolgirls Problem. Fifteen schoolgirls 
take daily walks, arranged in five rows of three each; arrange the girls so that for 
seven consecutive days, no girl is in a row with the same companion more than once. 
The solution to this problem is a particularly interesting Steiner triple system on 15  
varieties, with parameters (35 , 15 ,  7 ,  3 , 1 )-but that's another story. 

Speaking of Steiner triple systems: are there Steiner quadruple systems? In fact, 
the idea generalizes to a Steiner system S(k , m, n) ,  which is a collection C of m 
element subsets of an n-element set B, such that every k-element subset of B is 
contained in exactly one of the sets in C. An S (2, 3 , n) is a Steiner triple system, and 
an S(2 , n + 1 ,  n2 + n + 1 )  is a finite projective plane. Not too many of these are known 
with k > 3 .  One of these is known as S(5 ,  8 ,  24) ; it has many extraordinary properties, 
as well as connections with-ahh, but that 's another story! 
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Harmonic numbers are defined to be partial sums of the harmonic series. For n ::::: 1, 
let 

1 1 1 Hn = 1 + 2 + 3 + · · · + ;; . 

The first five harmonic numbers are H1 = 1 ,  H2 = 3/2, H3 = 1 1 /6, H4 = 25/ 12, 
Hs = 1 37/60. For convenience we define H0 = 0. Since the harmonic series diverges, 
Hn can get arbitrarily large, although it does so quite slowly. For instance, H1,ooo.ooo � 
14.39.  

Harmonic numbers even appear in real life. If you stack 2-inch long playing cards 
to overhang the edge of a table as far as possible, the maximum distance that n cards 
can hang off the edge of the table is Hn [5]. For example, 4 cards can be stacked to 
extend past the table by just over 2 inches, since H4 = 25/ 12.  

Harmonic numbers satisfy many interesting properties. For nonnegative integers n 
and m, we list some identities below: 

n-i 
L Hk = nHn - n . 
k=i 

� (�)Hk = (m : J ( Hn - m � 1) · 
n-i (k) 1 (n) t; m n _ k 

= 
m (Hn - Hm) . 

( 1 )  

(2) 

(3) 

Although all of these identities can be proved by algebraic methods (see [5]), the 
presence of binomial coefficients suggests that these identities can also be proved com
binatorially. A combinatorial proof is a counting question, which when answered two 
different ways, yields both sides of the identity. Combinatorial proofs often provide 
intuitive and concrete explanations where algebraic proofs may not. For example 

n-i 
L k · k! = n! - 1  
k=i 

is a standard exercise in mathematical induction. But to a combinatorialist this identity 
counts permutations in two different ways. The right side counts the number of ways 
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to  arrange the numbers 1 through n ,  excluding the natural arrangement 1 2 3 . . .  n .  
The left side counts the same quantity by  conditioning on the first number that i s  not in 
its natural position: for 1 ::::: k ::::: n - 1 ,  how many arrangements have n - k as the first 
number to differ from its natural position? Such an arrangement begins as 1 2 3 . . . n -
k - 1 followed by one of k numbers from the set {n - k + 1 ,  n - k + 2, . . .  , n } .  The 
remaining k numbers (now including the number n - k) can be arranged k! ways. 
Thus there are k · k! ways for n - k to be the first misplaced number. Summing over 
all feasible values of k yields the left side of the identity. 

Although Hn is never an integer for n > 1 [5], it can be expressed as a rational num
ber whose numerator and denominator have combinatorial significance. Specifically, 
for n =:: 0 we can always write 

H _ Pn n -
n! 

as a (typically nonreduced) fraction where Pn is a nonnegative integer. 
Now Po= Ho = 0. For n =:: 1 ,  Hn = Hn-1 + 1/n  leads to 

Hence for n =:: 1 ,  

Pn 
n! 

Pn- 1 1 npn- 1 + (n - 1)!  
= + -= . 

(n - 1)!  n n! 

Pn = npn- 1  + (n - 1)! 

(4) 

(5) 

The combinatorial interpretation of these numbers is the topic of the next section. 

Stirling numbers 

For integers n =:: k =:: 1 ,  let [�] denote the number of permutations of n elements with 

exactly k cycles. Equivalently [�] counts the number of ways for n distinct people to 

sit around k identical circular tables, where no tables are allowed to be empty. [�] is 

called the (unsigned) Stirling number of the first kind. As an example, (;] = 3 since 
one person must sit alone at a table and the other two have one way to sit at the other 
table. We denote these permutations by ( 1 ) (23) ,  ( 1 3) (2) , and ( 1 2) (3) :  

We can compute the numbers [�] recursively. From their definition, we see that for 
n =:: 1 ,  

[�] = (n - 1 )!, 

since the arrangement (a1aza3 .. . an ) is the same as arrangements (aza3 . . . anal )  and 
(a3a4 . . . a1a2) and so on. Now for k =:: 2, we will see that 

(6) 

On the left, we are directly counting the number of ways to seat n + 1 people around 
k circular tables. On the right we count the same thing while conditioning on what 
happens to person n + 1 .  If n + 1 is to be alone at a table, then the remaining n people 
can be arranged around k - 1 tables in [k�1] ways. If n + 1 is not to be alone, then we 

first arrange 1 through n around k tables (there are [�] ways to do this); for each of 
these configurations, we insert person n + 1 to the right of any of the n already-seated 
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people. This gives u s  n [�] different permutations where n + 1 i s  not alone. Summing 
gives equation (6) . 

Notice that when k = 2, equation (6) becomes 

(7) 

which is the same as recurrence (5) with Pn = [nil Since PI = 1 = [;] , it follows 

that for all n 2: 1 ,  Pn = [nil Combining with the definition of Pn in (4) gives 

THEOREM 1 .  For n 2: 1 ,  

Hn- . _ � [n + 1] 
n !  2 

Next we show how to count Theorem 1 directly-without relying on a recurrence. 
First we set some notational conventions. Let T,. denote the set of arrangements of 
the numbers 1 through n into two disjoint, nonempty cycles. Thus 17;.1 = [;]. We 
always write our cycles with the smallest element first, and list the cycles in increas
ing order according to the first element. For example, 79 includes the permutation 
( 1 85274) (396) , but not ( 1 95) (2487) (36) nor ( 1 23) (4567) (8) (9) . By our convention, 
the cycle containing 1 is always written first; consequently we call it the left cycle. 
The remaining cycle is called the right cycle. All permutations in T,. are of the form 
(a1 a2 . . .  aj ) (aj+ I . . . an) ,  where 1 ::=:: j ::=:: n - 1 ,  a1 = 1 ,  and aj+I is the smallest ele
ment of the right cycle. 

For a purely combinatorial proof of Theorem 1 that does not rely on a recursion, 
we ask, for 1 ::::: k ::::: n, how many permutations of 7;.+1 have exactly k elements in the 
right cycle? To create such a permutation, first choose k elements from {2 , . . .  , n + 1 }  ((�) ways), arrange these elements in the right cycle ( (k - 1 ) !  ways), then arrange the 
remaining n - k elements in the left cycle following the number 1 ((n - k) ! ways). 
Hence there are G) (k - 1 ) !  (n - k) ! = n ! j  k permutations of 7;.+1 with k elements in 

the right cycle. Since 7;.+1 has [ni1 ] permutations, it follows that 

as desired. 

[n + 1] n n !  
= L::- = n !Hn , 2 k=I k 

Another way to prove Theorem 1 is to show that for 2 ::=:: r ::=:: n + 1 ,  there are ,�1 
permutations in T,.+I that have r as the minimum element of the right cycle. 

Here, the permutations being counted have the form ( 1  . . .  ) (r . . .  ) where elements 
1 through r - 1 all appear in the left cycle, and elements r + 1 through n + 1 can 
go in either cycle. To count this, arrange elements 1 through r - 1 into the left cycle, 
listing element 1 first; there are (r - 2)! ways to do this.  Place element r into the right 
cycle. Now we insert elements r + 1 through n + 1 ,  one at a time, each immediately to 
the right of an already placed element. In this way, elements 1 and r remain first (and 
smallest) in their cycles. Specifically, the element r + 1 can go to the right of any of the 
elements 1 through r. Next, r + 2 can go to the right of any of the elements 1 through 
r + 1 .  Continuing in this way, the number of ways to insert elements r + 1 through 
n + 1 is r(r + 1 ) (r + 2) · · · n = n !  j (r - 1 ) ! . This process creates a permutation in 
7;.+1 with r as the smallest element in the right cycle. Thus, there are 

n !  n !  
(r - 2) !  - --

(r - 1 ) !  r - 1 
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such permutations. Since 7,;+1 has [n� 1] permutations, and every permutation in 7,;+1 
must have some smallest integer r in the right cycle, where 2 :::.=: r :::.=: n + 1 ,  we get 

[n + 1] n+ l n !  n 1 = L- = n! L- = n! Hn . 
2 r=2 r - 1 k=l k 

An alternate way to see that n !  j (r - 1 )  counts permutations of the form ( 1  · · ·) (r · · ·) 
is to list the numbers 1 through n + 1 in any order with the provision that 1 be listed 
first. There are n !  ways to do this. We then convert our list 1 a2 a3 · · · r · · · an+ l to 
the permutation ( 1  az a3 . . · ) (r . . .  an+d by inserting parentheses. This permutation 
satisfies our conditions if and only if the number r is listed to the right of elements 
2, 3 , . . .  , r - 1 .  This has probability 1 / (r - 1 )  since any of the elements 2, 3 , . . .  , r 
have the same chance of being listed last among them. Hence the number of permuta
tions that satisfy our conditions is n !  j(r - 1 ) .  

Algebraic connection The Stirling numbers can also be defined as coefficients in 
the expansion of the rising factorial function [3] : 

x(x + 1 ) (x + 2) · · · (x + n - 1 )  = '!; [:]xm. (8) 

Using this definition, Theorem 1 can be derived algebraically by computing the x2 
coefficient of x(x + 1 ) (x + 2) · · · (x + n) . 

To show that this algebraic definition of Stirling numbers is equivalent to the com
binatorial definition, one typically proves that both satisfy the same initial conditions 
and recurrence relation. However, a more direct correspondence exists [1] , which we 
illustrate with an example. 

By the algebraic definition, the Stirling number e�J is the coefficient of x3 
in the 

expansion x(x + 1 ) (x + 2) · · · (x + 9) . The combinatorial definition says [ 13°] counts 
the number of ways that elements 0, 1 ,  2, . . .  , 9 can sit around 3 identical circular 
tables .  Why are these definitions the same? Each term of the x3 

coefficient is a prod
uct of seven numbers chosen from among 1 through 9. Surely this must be counting 
something. What is a term like 1 · 2 · 3 · 5 · 6 · 8 · 9 counting? 

As illustrated in FIGURE 1, this counts the number of ways elements 0 through 9 
can seat themselves around 3 identical tables where the smallest elements of the tables 
are the "missing" numbers 0, 4, and 7. To see this, we pre-seat numbers 0, 4, 7 then 
seat the remaining numbers one at a time in increasing order. The number 1 has just 
one option-sit next to 0. The number 2 then has two options-sit to the right of 0 or 
sit to the right of 1 .  The number 3 now has three options-sit to the right of 0 or 1 or 2. 
The number 4 is already seated. Now number 5 has five options-sit to the right of 0 
or 1 or 2 or 3 or 4, and so on. A general combinatorial proof of equation (8) can also 
be done by the preceding (or should that be "pre-seating"?) argument. 

With this understanding of the interactions between harmonic and Stirling numbers, 
we now provide combinatorial explanations of other harmonic identities. 

Recounting harmonic identities 

In this section, we convert identities ( 1 ), (2), and (3) into statements about Stirling 
numbers and explain them combinatorially. We view each identity as a story of a 
counting problem waiting to be told. Each side of the identity recounts the story in 
a different, but accurate way. Both of our combinatorial proofs of Theorem 1 were 
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Figure 1 How many ways can the n u m bers 1 ,  2 ,  3,  5 ,  6, 8, 9 seat themselves around 
these tab les? 

obtained by partitioning the set 7;,+1 according to the size of the right cycle or the 
minimum element of the right cycle, respectively. In what follows, we shall transform 
harmonic equations ( 1 ), (2) and (3) into three Stirling number identities, each with [;] 
on the left-hand side. The right-hand sides will be combinatorially explained by par
titioning T, according to the location of element 2, the largest of the last t elements, 
or the neighborhood of the elements 1 through m. Our first identity, after applying 
Theorem 1 ,  and re-indexing (n :=  n - 1 )  gives us 

IDENTITY 1 .  For n 2: 2 [n] 
= (n _ 1 ) !  + I: (n - 2) ! [k + 1 ]

· 2 k= l  k !  2 

To prove this combinatorially, we note that the left side of the identity, [;] , counts 
the number of permutations in T, .  On the right, we know from our second combi
natorial proof of Theorem 1 ,  that (n - 1 ) !  counts the number of permutations in T, 
where the number 2 appears in the right cycle. It remains to show that the summation 
above counts the number of permutations in T, where 2 is in the left cycle. Any such 
permutation has the form 

( 1 a1 a2 · · · an -2-k 2 b1 b2 · · · bj- I ) (bj · · · bk ) , 

for some 1 .:::; k .:::; n - 2 and 1 .:::; j .:::; k. We assert that the number of these permuta
tions with exactly k terms to the right of 2 is given by the kth term of the sum. 
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To see this, select a1 , a2 , • . • , an-2-k from the set {3 , . . .  , n }  in any of (n - 2) ! I k! 
ways. From the unchosen elements, there are e�I] ways to create two nonempty cycles 
of the form (2 bi . . .  bj- I ) (bj . . .  bk) where 1 .::::: j .::::: k. Multiplying the two counts 
gives the kth term of the sum as the number of permutations in T, with exactly k terms 
to the right of 2, as was to be shown. 

We apply a different combinatorial strategy to prove the more general equation (2), 
which, after applying Theorem 1 and re-indexing (n := n - 1 ,  m := t - 1 ,  and 
k := k - 2), gives us 

IDENTITY 2 .  For 1 :S: t :S: n - 1 [n] 
= 

(n - 1 ) !  
+ t t [k - 1] (n - 1 - t ) ! . 2 t k=t+ l 2 (k - 1 - t ) !  

The combinatorial proof of this identity requires a new interpretation of ( n  - 1 ) !  I t .  
For 1 .::::: t .::::: n - 1 ,  we define the last t elements of ( la2 • • • aj ) (aj+ I · · · an ) to b e  the 
elements an , an- t .  . . .  an+ I-r ,  even if some of them are in the left cycle. For example, 
the last 5 elements of ( 1 85274) (396) are 6, 9, 3, 4, and 7 . 

We claim that for 1 .::::: t .::::: n - 1 ,  the number of permutations in  T, where the 
largest of the last t elements is alone in the right cycle is (n - 1 ) !  I t .  Here, we 
are counting permutations of the form ( la2 • • • an- I ) (an ) ,  where an is the largest of 
{an+ l -1 • an+2-r .  . . .  ' an- I • an } · Among all (n - 1 ) !  permutations of this form, the 
largest of the last t elements is equally likely to be anywhere among the last t po
sitions. Hence (n - 1 ) !  It of them have the largest of the last t elements in the last 
position. 

Next we claim that for 1 .::::: t .::::: n - 1 ,  the number of permutations in T, where 
the largest of the last t elements is not alone in the right cycle is the summation in 
Identity 2. 

To see this, we count the number of such permutations where the largest of the last 
t elements is equal to k. Since the number 1 is not listed among the last t elements, we 
have t + 1 .::::: k .::::: n .  To construct such a permutation, we begin by arranging numbers 
1 through k - 1 into two c.(cles . Then insert the number k to the right of any of the 
last t elements. There are [ ; 1 ] t  ways to do this. The right cycle contains at least one 
element less than k, so k is not alone in the right cycle (and could even be in the 
left cycle) . So that k remains the largest among the last t elements, we insert elements 
k + 1 through n, one at a time, to the right of any but the last t elements. There are (k -
t ) (k + 1 - t) · · · (n - 1 - t) = (n - 1 - t)! l (k - 1 - t) ! ways to do this. Multiplying 
the two counts give the kth term of the sum as the number of permutations where the 
largest of the last t elements equals k, and it is not alone in the right cycle; summing 
over all possible values of k, we count all such permutations . Since for any permutation 
in T,,  the largest of the last t elements is either alone in the last cycle, or it isn't, and 
this establishes Identity 2. 

Notice that when t = 1 ,  Identity 2 simplifies to Identity 1 . When t = n - 1, Iden
tity 2 essentially simplifies to equation (7). 

For our final identity, we convert equation (3) to Stirling numbers using Theorem 1 
and re-indexing (n := n - 1 ,  m := m - 1 ,  and k := t - 1) .  This gives us 

IDENTITY 3 .  For 1 :S: m :S: n 

[n] = [m] (n - 1 ) !  
+ � ( t - 1 ) (m - 1 ) !  (n - m) ! . 

2 2 (m - 1 ) !  {;;;. m - 1 (n - t) 

To prove this identity combinatorially, we condition on whether numbers 1 through 
m all appear in the left cycle. First we claim that for 1 .::::: m .::::: n ,  the first term on 
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the right in the identity counts the number of permutations in T,. that do not have ele
ments 1 , 2, . . .  m all in the left cycle: For these permutations, the elements 1 through m 
can be arranged into two cycles in [�] ways. Insert the remaining elements m + 1 
through n, one at a time, to the right of any existing element, finding that there are 
m(m + 1 )  · · · (n - 1 )  = (n - 1 ) !  j (m - 1 ) !  ways to insert these elements. Multiplying 
the two counts gives the first term of the right-hand side. 

To complete the proof, we must show that the summation on the right counts the 
number of permutations in T,. where elements 1 through m are all in the left cycle. 
To see this, we claim that for m :::;: t :::;: n - 1 ,  the summand counts the permutations 
described above with exactly t elements in the left cycle and n - t elements in the 
right cycle. To create such a permutation, we first place the number 1 at the front of 
the left cycle. Now choose m - 1 of the remaining t - 1 spots in the left cycle to be 
assigned the elements {2 , . . .  , m } .  There are (�-=_\) ways to select these m - 1 spots 
and (m - 1 ) !  ways to arrange elements 2, . . .  , m - 1 in those spots . For example, to 
guarantee that elements 1 , 2, 3 , 4 appear in the left cycle of FIGURE 2, we select three 
of the five open spots in which to arrange 2, 3 , 4. The insertion of 5 , 6 , 7 , 8 ,  9 remains. 
Now there are (n - m) ! ways to arrange elements m + 1 through n in the remaining 
spots, but only one out of n - t of them will put the smallest element of the right 
cycle at the front of the right cycle. Hence, elements m + 1 through n can be arranged 
in (n - m) ! j (n - t) legal ways. Multiplying gives the number of ways to satisfy our 
conditions for a given t, and the total is given by the desired summation. 

Figure 2 I n  79, a perm utat ion with 1 ,  2 ,  3, 4 i n  a l eft cyc l e  contai n i ng exactly s ix  e l e
ments is created by fi rst select ing th ree of the five open spots, and then arrang ing  2 ,  3, 4 
i n  them .  Subsequent ly, 5, 6, 7, 8 ,  9 wi l l  be arranged i n  the remai n i ng spots. 

We have already noted that harmonic numbers arise in real life. A further occurrence 
arises in calculating the average number of cycles in a permutation of n elements. 
Specifically, 

THEOREM 2. On average, a permutation ofn elements has Hn cycles. 

There are n !  permutations of n elements, of which [�] have k cycles. Consequently, 
Theorem 2 says 

L�=I k [�] 
---== = Hn , n !  

or equivalently, by Theorem 1 ,  
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IDENTITY 4 .  For n ;::: 1 , 

The left side counts the number of permutations of { 1 , . . .  , n }  with an arbitrary 
number of cycles, where one of the cycles is distinguished in some way. For example 
( 1 284) (365) (79) , ( 1 284) (365) (79) , and ( 1 284) (365) (79) are three different arrange
ments with k = 3 . The right side counts the number of permutations of {0 , 1 , . . .  , n }  
with exactly two cycles. It remains to describe a one-to-one correspondence between 
these two sets of objects. Can you deduce the correspondence between the following 
three examples? 

( 1284 ) (365) (79) {:::::::> (079365) ( 1284) 
( 1284) (365) (79) {:::::::> (079 1284) (365) 
( 1284 ) (365) (79) {:::::::> (0365 1284 ) (79) 

In general, we transform the permutation with n elements 

into 

(0 C, Cz · · · Cj- l Cj+ ,  · · · Ck- !  Ck) (Cj ) . 
The process is easily reversed. Given (0 a 1 • · • an-j ) (b 1 • • • bj ) in T,.+" the right cycle 
becomes the distinguished cycle (b1 • · · bj ) · The distinguished cycle is then inserted 

among the cycles Ck_ 1 , . . • C2 , C" which are generated one at a time as follows:  C1 
(the rightmost cycle) begins with a1 followed by a2 and so on until we encounter a 
number a; that is less than a1 . Assuming such an a; exists (that is, a1 f. 1) ,  begin 
cycle C2 with a; and repeat the procedure, starting a new cycle every time we encounter 
a hew smallest element. The resulting cycles (after inserting the distinguished one in 
its proper place) will be a permutation of n elements written in our standard notation. 
Hence we have a one-to-one correspondence between the sets counted on both sides 
of Identity 4. 

Notice that by distinguishing exactly m of the cycles above, the procedure above 
can be easily modified to prove the more general 

Likewise by distinguishing an arbitrary number of cycles, the same kind of procedure 
results in 

t [n]2k = (n + 1 ) ! . 
k=O k 

Beyond harmonic numbers 

We have only scratched the surface of how combinatorics can offer new insights about 
harmonic numbers. Other combinatorial approaches to harmonic identities are pre
sented by Preston [6] . We leave the reader with a challenge: A hyperharmonic number 
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H�k) is defined as follows:  Let H�1) = Hn and for k > 1 ,  define H�k) = 2::7=1 H?- 1) . 
Now consider the following generalization of identity ( 1 )  from The Book of Numbers 
by Conway and Guy [4] : 

(k) _ (n + k - 1) Hn - (Hn+k- 1 - Hk_ J ) . k - 1  
Such an identity strongly suggests that there must be a combinatorial interpretation of 
hyperharmonic numbers as well . And indeed there is one [2] . You can count on it! 
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P l otti ng the Escape-An An i mati on  of 
Parabo l i c B i fu rcati ons  i n  the Mande l b rot Set 

A N N E . M .  B U R N S  
Long Island University 

C. W. Post Campus 
Brookville, NY 11 54 8  aburns®liu.edu 

An exercise assigned to a class studying fractals led to the idea of making an ani
mation related to the Mandelbrot set. The students were to write a simple program in 
BASIC to plot orbits obtained by iterating the complex-valued function fc (Z) = z2 + c 

for various values of the complex parameter c. They found that the selection of c was 
critical; most values produced very uninteresting orbits. 

In fact, at first the whole project appeared to be doomed to failure. We began with 
the easiest case, c = 0; the orbit of a point zo is zo ,  z6 , zri , . . . .  When we chose a starting 
point inside the unit circle, after one or two iterations the iterates were so close to zero 
that on the screen they appeared to be zero. When we chose a starting point outside 
the unit circle, after one or two iterations the iterates were so large in magnitude that 
they were off the screen. When we selected a point on the unit circle, after one or 
two iterations, because of the lack of numerical accuracy of the computer, the iterates 
left the unit circle and quickly headed straight for zero or infinity. The dynamics of 
f0 (z) = z2 on the unit circle are, of course, worthy of much study and have been 
described extensively (see Devaney [2]) .  These difficulties did present me with a good 
opportunity to discuss the notions of stable and unstable orbits, and attracting and 
repelling fixed points. 

After this first experiment, it seemed as if it might be a hopeless task to produce a 
complex number c where we could start with a point z0, plot its orbit under iteration 
of fc (Z) = z2 + c on the computer and see an interesting and illustrative result. But it 
is possible ! For example, with c = -.379 + .587i we see an attracting fixed point and 
the orbits of nearby points approaching the fixed point in a nice spiral arrangement as 
in FIGURE 1 .  The program that draws pictures like this one creates larger disks early 
in the iteration and smaller ones later. 

For c = - .742 + . 1 166i we can see an attracting period 27 cycle. For c = 
- .3905 + .5868i we can see a Siegel disk, which is a region in the complex plane 
inside of which orbits are deformed circles, invariant under iteration of fc · 

On my website (see http://phoenix.liu.eduraburns/orbits/colororb.html), there is a 
Java applet allowing the user to click on a point and see its orbit for various values 
of c. In the applet, you may choose from pre-selected values of c, or you can enter your 
own. The applet allows you to select the number of colors n ;  then every nth point in the 
orbit is colored the same color, showing the nature of the orbits in a neighborhood of an 
attracting period n cycle. (If all you want is to see the specific examples in this article, 
follow the links from the MAGAZINE's website: www.maa.org/pubs/mathmag.html.) 

When I would give students an interesting value of c, they enjoyed using the applet 
to experiment by making very small changes in the real and imaginary parts of c. They 
were amazed that the smallest changes in the parameter c produced drastic, qualitative 
changes in the orbits. For example, try a small change in the c that produces a Siegel 
disk. The next question was, "How do we pick interesting values of c for ourselves?" 
The answer, of course, is to be found in a study of the Mandelbrot set, and that is the 
subject of this paper. 



Figure 1 Orbi ts near an attracti ng  fixed po i nt 

The Mandelbrot set, shown in FIGURE 2, is the set of c-values for which the orbit 
of 0 is bounded. In the picture, the origin is somewhere near the middle of the central 
cardioid, and the set is symmetrical about the real axis, which is shown horizontally, 
as usual . The bulbs correspond to bounded orbits of various periods . 

Figure 2 Shown below the Mande l b rot set is the fam i l i a r  orb i t  d i agram wi th the succes
s ion  of per iod-dou b l i ng b ifu rcations that occ u r  as the parameter c i s decreased from 1/4 
to -2 a long the rea l ax is  
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Earlier i n  the course w e  had studied the dynamics of the real-valued function 
fc (x) = x2 + c where both the argument x and the parameter c are real numbers . For 
background, see Devaney [2] or Ross [6] . The well-known orbit diagram is shown in 
FIGURE 2 below the Mandelbrot set. This shows, for each value of c on the horizontal 
axis, the values of x in the orbit of 0 after many iterations. The horizontal scales of the 
two diagrams are the same, for easy comparison. 

If c is chosen from one of the bulbs in the Mandelbrot set along the negative real 
number line, then directly below it we can read from the orbit diagram the period 
of the attracting cycle for fc ·  In the orbit diagram we can see the sequence of period
doubling bifurcations leading to chaos. These bifurcations take place as the real-valued 
c passes through the sequence of discs along the negative real axis and then escapes 
the Mandelbrot set. This suggested that we try to find other escape routes from the 
Mandelbrot set along which we might find a different pattern of interesting dynamics. 

One difficulty with following new escape routes is that as c escapes the Mandelbrot 
set along paths other than the real line, we require two parameters, the real and imagi
nary parts of c. A second difficulty is that the attracting periodic points are not real in 
general, and thus it is no longer possible to plot the attractors versus c in two dimen
sions . A solution was to make an animation where we view the changes in dynamics 
over time. Finally, we put the animations together into a larger animation where we 
can see the variety of explosions in the fixed-point structure of fc as c winds around 
the boundary of the large cardioid. Though my original intent was to examine the 
bifurcations that took place at parabolic points (to be defined later), the animations 
revealed that some of the more spectacular explosions occur as c escapes the Man
delbrot set near parabolic points . An animation can be seen on the website at http:// 
phoenix.liu.edwaburns/orbits/nfurc800.htm. 

As a bonus, the investigation of escape routes suggests a way to construct a recursive 
fractal resembling the Mandelbrot set that might occur if, as some of our students 
believe, all the numbers between 0 and 1 were rational. 

Prel iminaries 

The family of complex functions Uc (z) } where fc (z) = z2 + c and c is a complex pa
rameter has been studied extensively. We give a brief summary of only the facts nec
essary to understand the algorithm. In this limited space it is not possible to cover all 
details and proofs, as the Mandelbrot set is an extremely complicated object. For much 
more about this fascinating subject we refer the reader to the excellent articles in the 
References, especially the paper of Bodil Branner [1 ] .  If you need more background 
about the Mandelbrot set, see Devaney's book [2] or the article by John Ewing [3] . 

We are interested in the orbits Ucn (zo) } where, for a function f' r denotes the 
n-fold composition of f with itself, that is, r(z) = f(f ( . . .  (f (z) ) ) ) , and Zo is some 
initial point. It is well known that for different values of the parameter c we obtain 
many different types of orbits. There are orbits that are attracted to a single attracting 
fixed point, orbits that are attracted to an attracting cycle of period n for any integer n ,  
orbits that travel on  invariant circles, orbits that are repelled from a repelling fixed 
point, and chaotic orbits. When we finish our tour of the Mandelbrot set, we will see 
that it is easy to find a value c and a point whose orbit does just about anything we 
want it to do. 

First we present some definitions. A point w is a fixed point of a function f if 
f ( w) = w. If w is a fixed pointfor f, w is attracting if I f' ( w) I < 1 ,  super-attracting 
if f'(w) = 0, neutral if 1/' (w) l = 1 ,  or repelling if 1/' (w) l > 1 .  A cycle of period n 
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for f is an orbit {w 1 , w2 , . . .  , Wn } such that wk+l = f(wk) for k = 1 ,  2, . . .  , n - 1 ,  
and w1 = f(wn) .  If w 1 =!= f (wj ) for j < n we say that this cycle has prime period n .  
(This vocabulary i s  common, and does not mean that n has to be a prime number.) 
Since a cycle of period n is obviously a cycle of period kn for any integer k, for the 
sake of brevity when we say period n we will mean prime period n unless otherwise 
noted. Note that each Wk is a fixed point of r . Also note that for any w j in the cycle, 

n 
<r)' (wj ) = n f'(wd 

k=l 

by the chain rule. This quantity is called the multiplier of the cycle. The cycle is called 
attracting, super-attracting, neutral, or repelling, according to whether the absolute 
value of the multiplier y is less than 1 ,  equal to 0, equal to 1 ,  or greater than 1 .  A 
neutral fixed point or cycle is called parabolic if the derivative or multiplier at that 
point or cycle is ei2rca with a rational. In this paper, we concern ourselves with the 
bifurcations that take place at the parabolic fixed points and cycles. 

D EFINITION.  The Mandelbrot set is defined by 

M = {c I Ucn (O) } is bounded for n E N} . 

Since students find this a hard concept to grasp, we emphasize that the Mandelbrot 
set M lies in the c plane, that is, the parameter plane. We are going to be interested in 
the open connected components W of M such that for all c E W, fc has an attracting 
fixed point or an attracting cycle of period n for some n E N. Such a component is 
called a hyperbolic component. We say that a fixed point w of a function f attracts a 
point z if 

r <z) --+ w as n --+ 00 .  

A cycle { w 1 , w2 , . . .  , wq } attracts a point z if fqn (z) --+ wk as n --+ oo for one of the 
wk in the cycle. The set of points attracted to an attracting fixed point or cycle is called 
the basin of attraction of the fixed point or cycle. It is easy to see that it is an open set 
containing the point or cycle. 

Fatou proved in 1905 that for a rational function, the basin of attraction of an at
tracting fixed point or cycle is either the whole of C or it contains a critical point. A 
proof can be found in Devaney [2] . Since 0 is the only critical point of !co for any value 
of c there can be only one attracting fixed point or cycle; if an attracting fixed point or 
cycle exists we can find it by looking at the orbit of 0. 

Attracting fixed points Let M1 = {c I fc has a single attracting fixed point} .  If 
c E M1 o then there exists w E C such that fc (w) = w and I J; (w) l < 1 .  This means 
that w2 + c = w and 12w l < 1 or 

c = w - w2 and 
1 

l w l < 2 · ( 1 )  

Solving w2 - w + c = 0 gives w = ( 1  ± J1 - 4c)/2, where J denotes the principal 
value of the square root. For c E M1 there are two fixed points: 

1 - .Jf="4c 
W =  

2 
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i s  the single attracting fixed point, and 

1 + J1=4C  
W =  

2 

is a repelling fixed point. Formula ( 1 )  maps the interior of the disk I w I < 1 /2 into the 
interior of MI and the map continues to the boundary, where l w l  = 1 /2 and c E aMI .  

From ( 1 )  we can write 

0 � r < 1 and 0 � () < 2rr, and 

re;o r2ei2!J 
c = - - --

2 4 ' 0 � r < 1 and 0 � () < 2rr. 

(2) 

(3) 

To get the boundary of the region (3), let r = 1. This gives the large cardioid we 
see in the pictures of M. Let a = ()  j2rr . Then () = 2rra,  and for 0 � () < 2rr we have 
O � a < l . 

As a traverses the unit interval from 0 to 1 ,  c winds once around the boundary of 
the cardioid, o M� o  and the corresponding neutral fixed point w winds once around 
the circle of radius 1 /2 centered at the origin. Notice that when a =  1 /2, () = rr ,  
c = -3 I 4 and w = - 1/2. This i s  precisely the point at which the large disk of radius 
1 /4 centered at - 1  is attached to MI and where the first period-doubling bifurcation 
takes place in the orbit diagram for the real valued function fc . For future reference we 
mention that the derivative at the corresponding attracting fixed point w for c E MI is 
2w = 1 - J l - 4c. The map 

c 1-+ 1 - J1 - 4c (4) 

is a conformal isomorphism of MI onto the unit disk D that extends continuously to 
the boundary. This important map will be generalized later. 

Period 2 points To find a period 2 cycle we must solve fc
2 (w) = w,  or (w2 + c)2 + 

c - w = 0. Using some elementary algebra and the fact that the two fixed points al
ready discussed are also period 2 points, we find that for any c the period 2 points are 
solutions of (w2 - w + c) (w2 + w + c + 1 )  = 0. The solutions of w2 - w + c = 0 
are the two fixed points already discussed. The period 2 cycle consists of the roots 
of the other quadratic factor, {w � o w2} ,  where WI = (- 1 + Jl - 4(c + 1 ) )/2 and 
w2 = (- 1 - J1 - 4(c + 1 ) )/2. 

Express c as in equation (3); when r = 0, then c = 0, and WI  and w2 lie on the 
unit circle, as do all the cycles of f0 (z) = z2 . For a = 1 /2, as r increases from 0 
to 1 ,  the attracting fixed point w and the period 2 points WI  and w2 all coalesce at the 
point - 1 /2. FIGURE 3 illustrates the paths taken by w,  w � o  and w2 • 

It is easy to check that for a = 1 /2 and r < 1 ,  the fixed point is attracting and the 
2-cycle is repelling; for r > 1 the fixed point is repelling and the cycle is attracting. 
At r = 1 ,  c = -3/4, we have J; (w) = - 1  and the multiplier is Yc = J; (wi ) J;(w2) = 
4(c + 1 )  = 1 .  The large disk attached to MI at this point is a hyperbolic component 
of M, which we will call MI12 ; for c E MI12 , fc has an attracting cycle of period 2. 
Just as the map (4) mapped MI onto the unit disk D, it is easy to check that the mul
tiplier, Yc = 4(c + 1 ) ,  gives a conformal isomorphism of MI;2 onto D which extends 
continuously to the boundary. 
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Figure 3 Paths taken by w, , w2 , and w for a = 1 /2 ,  0 :S r < 1 

1 09 

Period q points: the general case Again, let c = (rei21ca) /2 - (r2ei4JCa)j4, with 
0 :s a  < 1 .  Now let a = pjq, where p, q E N, gcd(p, q )  = 1 and p < q .  Just as in 
the case a = 1 /2, when r = 1 ,  the point c is the point on 8M1 where a hyperbolic 
component is attached to M1 ; we shall call this component Mpfq · The corresponding 
fixed point w = (ei2JCa)/2 is neutral. It is a parabolic fixed point. For r < 1 ,  w = 
(rei2JCa)/2 is attracting, and there is a repelling q-cycle, {w 1 , w2 , . • •  , wq } where each 
wk is a solution to fcq ( w) - w = 0. Just as in the case a = 1 /2, as r approaches 1 from 
below, the attracting fixed point and the points in the repelling q-cycle all coalesce at 
the point w = wk = (ei2JCa)j2. At this point J;(w) = ei21Cp/q and the multiplier is 

As r increases beyond 1, c moves into Mpfq • the fixed point w becomes repelling, and 
the cycle {wJ . w2 , • • .  , wq } becomes attracting. For e E Mpfq •  fc has an attracting cycle 
of period q .  And once again, as in the case pjq = 1 /2, for c E Mpfq • the multiplier Yc 

is a conformal isomorphism of M pfq onto the unit disk D which extends continuously 
to the boundary. 

Other hyperbolic components A glance at a picture of the Mandelbrot set shows 
that smaller bulbs emanate from each bulb M pfq . For c in the interior of these bulbs, fc 

has an attracting cycle of some finite period. There are two types of hyperbolic compo
nents of M; they can be described intuitively as ( i) primitive hyperbolic components, 
which look like M1 itself (having a cusp) and (i i )  those that are tangent to another 
hyperbolic component and whose boundary is smooth. In FIGURE 1 ,  the primitive hy
perbolic components are almost too small to be seen; one appears as a speck far to the 
left of the figure. For a good mathematical description, see Milnor [ 4, p. 230] . We will 
be interested only in the second type. 

Let W be any hyperbolic component of M; then for c E W, fc has an attracting 
cycle of period q .  W has a well-defined center, a value of c for which c is on the orbit 
of 0; that is, the cycle {0, c, (c2 + c) , . . .  } is super-attracting : the multiplier 
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Yc = TI J:(wd = 0, 
k=l 

since J; (0) = 0. A theorem of Douady, Hubbard, and Sullivan tells us that Yc is a con
formal isomorphism of W onto the open unit disk and the map extends continuously 
to the boundary on which I Yc I = 1 .  Thus on a W we have 

Yc = ei2rcfJ ' 0 ::::: {3 < 1 . 

The variable f3 is called the internal argument of W. At the point c where Yc = e i2rrfJ , 
(where f3 = sj t ,  s ,  t E N, and s ,  t relatively prime), there is another smaller hyper
bolic component V attached to W. For c E V, fc has an attracting cycle of period qt .  
See Peitgen and Richter [5] . When f3 = 0 ,  Yc = 1 and for a hyperbolic component 
of the second (nonprimitive) type the corresponding value of c is the point where W 
is attached to a larger bulb, or, in the case where W is a component attached to the 
boundary of the main cardioid M1 , c is the point of attachment; we have already seen 
that at that point we had Yc = 1 .  The curves of internal argument f3 are those curves 
that are mapped by Yc onto the rays rei2rrfJ , 0 ::::: r < 1 .  For M1 the curves of internal 
argument f3 are exactly the curves c = (rei2rrrx )/2 - (r2ei4rrrx ) /4, 0 ::::: r < 1 illustrated 
in FIQURE 4. 

Figure 4 Escape routes from M1 : cu rves of i nterna l  a rgu ment p/q, 2 :s q :s 1 0, 1 :s p < 
q, gcd (p, q) = 1 

This progression of bulbs attached to bulbs suggests using recursion to construct a 
geometric fractal that resembles the Mandelbrot set without the hairs, filaments, and 
primitive hyperbolic components. It turns out to be surprisingly easy. The only problem 
was what radius to make each of the bulbs. Milnor [ 4, p. 288] gave the answer, but 
without a reason: The approximate radius of each Mp/q is (sin(rrpjq))/q2 • We see 
that this is exact for pI q = 1 /2. Compare FIGURE 5, a picture of what we will call the 
fake Mandelbrot set, with the real thing in FIGURE 1 ,  which was generated by the pixel 
method described in Ewing [3] . In the appendix we present an algorithm for creating 
this fractal. 
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Escape routes 

Figure 5 Fake Mandel brot set 

1 1 1  

To get the familiar bifurcation diagram in FIGURE 2, c starts at the point 1 14, then 
travels along the path of internal argument 0 of M1 to the center of M1 ; c then continues 
along the curve of internal argument 1 12 until it reaches the point -314 where it 
enters M112 and is now on the path of internal argument 0 with respect to M112 . When 
c reaches - 1 ,  the center of M112 , it jumps to the path of internal angle 1 12. More 
generally, c enters a period 2n bulb on a curve of internal argument 0, follows this curve 
to the center of the bulb, and leaves on a curve of internal argument 1 12 and enters a 
bulb of period 2n+ 1 • Thus, while c appears to be merely travelling along a straight line, 
it is doing something more complicated, in terms of the internal argument. 

To imitate this process, c should start at 1 14, follow the real number line to 0, 
turn onto the path of internal argument plq for M1 , c = (rei2rrpfq )l2 - (r2ei4rrpfq ) l4. 
When r = 1 ,  c enters the bulb Mpfq ·  The point c should then follow the path of internal 
argument 0 (with respect to Mp;q ) to the center of Mp;q . then turn onto the path of 
internal argument p 1 q ,  follow it to the budding point of a period q2 bulb, and continue 
the process going through bulbs of period q ,  q 2 ,  q 3 ,  . • .  before the onset of chaos. 
FIGURE 6 shows the approximate path for plq = 1 13 .  

To visualize the orbit diagram for pI q = 1 13 we show the attractors as frames of 
an animation. We view the orbit of 0 as c follows the path in FIGURE 6. FIGURE 7 
is a snapshot of the screen when the animation has finished. To see the true picture 
it is necessary to watch the animation, as points in later orbits cover points in earlier 
orbits . For q > 2 the escape routes are more complicated and finding a formula that 
generalizes the path taken when pI q = 1 12 is a problem for further research. We will 
describe an easier task, an animation of the changes in the dynamics of fc as c escapes 
M1 and enters one of the bulbs. 

Crossing the boundary of M1 The first step in building the animation is to draw 
the orbit diagram for a = pI q ,  or, actually, for any value of a .  As usual, let c = 
(rei2rra) l2 - (r2ei4rra) l4, where a is fixed. We want to start with c inside M" that is, 
let r start at some value r _ min < 1. We will let r increase to some value r _ max > 1 in 
increments dr. Since the interesting dynamics occur near the boundary of M1 , to start, 
let r _ min =  0.98, r _ max = 1 .2, and dr = 0.002; these values can be adjusted later. 
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Figure 6 Escape route from M a l ong cu rves of i nterna l  argu ment 1 /3 

For each value of r ,  plot some number n of the points fck (0) , k = 1 ,  2,  . . .  , n in the 
complex plane . Figuring out the region in the plane in which to display the picture 
is easy if we recall that when r < 1 ,  w = (rei2rra)/2 is an attracting fixed point. At 
first the orbit of 0 will be attracted almost immediately to that point, and the period q 
cycle will encircle that point; a s  r gets closer t o  1 the orbit will take longer to get near 
that point; finally at r= 1 the fixed point and cycle coalesce. As c enters a bulb and ap
proaches the center, one of the points in the cycle moves back toward the origin. Hence 
the center of the screen should be placed where the fixed point and cycle coalesce, that 
is, (rei2rra) /2, or x _ center = (cos(2na) ) /2 and y_ center = (sin(2na) ) /2; the width 
and height of the screen should be some number less than 2. Experiment shows that 
good values are 1 .7 ,  1 .4, and 0 .8 .  

Figure 7 Orb i t  d i ag ram as  c fo l lows the  escape route i n  F I G U R E  6.  The  orb i t  o f  0 i s  
p lotted 400 ti mes for each va l u e  of  c. The fi rst 3 5 0  po i n ts i n  the  orb i t  a re co lored gray, 
the l ast 5 0  co lored b l ack .  
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We could use various color schemes to see patterns in the orbit diagram. We could 
color points according to the value of k. Or we could color them according to the 
value of r, or according to some function of k and r. For a = pI q ,  using q colors 
and coloring the points numbered k mod q shows us clearly the order followed by the 
points in each orbit. 

When c enters a bulb M,14 the initial point in the orbit is drawn almost immediately 
into the q -cycle . Some beautiful patterns emerge when we perturb pI q slightly ; that 
is ,  let a = plq + 8 for some small value of 8, for in that case c exits M briefly and 
then reenters. F IGURES 8, 9, 10, and 1 1  show the orbit diagrams for various values of 
a .  For very small values of a the path is near the cusp of the cardioid and we see an 
implosion as c reenters M1 • 

Figure 8 Here p/ q = 1 1  /2 3 ;  fi rst c enters M1 1 ;n then apparent ly escapes M b r ief ly 
before re-ente r i ng  M i n the b u l b  M1 ;2 

Figure 9 Close-up  of a = 3 ! 7  + .005 
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Figure 1 0  a very sma l l ;  c escapes M near the cusp and then re-enters 

Figure 1 1  a near � 

For a sufficiently irrational (see Peitgen and Richter [5] ) it has been shown that 
there is a neighborhood of w = (e ;27"' ) /2  called a Siegel disk inside of which itera
tion of .f. behaves like a rotation ; orbits are confined to deformed circles surrounding 
the fixed point w that are invariant under iteration of j� .  Of course, for a computer, 
all numbers are rational, and even rational numbers are not all represented exactly. 
So, when we let e = 2na ,  the computer' s  n is not really n ,  and if we try to make a 
irrational we cannot really do so. However approximations work quite well; approx
imating JT by 3 . 1 4 1 5926 gives good results . To find a value for a that will let us see 
orbits near a Siegel disk we can use ratios of successive Fibonacci numbers , which we 
know approach ( - I + �) /2.  This value of a is known to admit a Siegel disk. 

Around the boundary of M1 : the animation We are ready to make the animation, 
an easy task now that the algorithm for the orbit diagram as a function of a is in place. 
Initially, my idea was to let a = p / q ,  taking q = 2, 3 ,  4, . . .  and letting p run through 
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those integers 1 to q - 1 that are relatively prime to q .  But this method gave a very 
slow progression to interesting dynamics. We get a more exciting sequence of pictures 
by perturbing these a, letting a = 1 I q + 8, where 8 is some small number, for example 
0.0015 .  This is the category called almost rational in the applet on my website. 

Alternatively, we can simply let a increase from 0 to 1 in constant increments . If we 
choose this method, we should take care to make the increment so that the sequence 
of as is not a sequence of rational numbers all having the same denominator. Another 
interesting progression of increments is to let a run through successive ratios of Fi
bonacci numbers . And, of course, the simplest way to choose values of a is to just use 
pseudo-random numbers between 0 and 1 ;  this function is built-in in most computer 
languages .  

For each a we clear the computer screen and plot the orbit diagram for that value 
of a .  This sequence gives us the animation. 

Students may enjoy thinking up new ways to animate the orbit diagrams . 

Conclusion 

Using the paths of internal argument a as escape routes from the Mandelbrot set al
lows us to visualize a series of parabolic bifurcations and to generate pictures of a 
variety of orbits. For example, the nature of a q2 cycle is very different when c is cho
sen from a secondary bulb of internal argument pI q attached to a pI q bulb than when 
it is chosen from a primary p2 lq2 bulb. In the Orbits applet, compare the orbits for 
c = - .032 + .793i (which is in the smaller bulb of internal argument 1 13 attached to 
M113) with orbits for c = .34 + .013i (which is in M119) .  Both values of c correspond 
to an attracting cycle of period 9, but the placement of points in the cycles, and hence 
the orbits, is very different in the two cases. In the simplest case, escaping the large car
dioid by following the path c = (reiZrra )l2 - (r2ei4rra )l4 makes it easy to find values 
of c near the boundary of the cardioid where exciting dynamics occur. This expression 
for c is also useful when teaching students how to generate interesting Julia sets . The 
idea behind the well-known orbit diagram for the real case suggested visualizing the 
orbit of 0 as the parameter changed. The idea of traveling around the boundary of M1 
came from seeing a variety of orbit diagrams and wanting my students to see them all 
at once. 

I have always been fascinated by recursion, and studying the structure of the suc
cession of parabolic bifurcations naturally led to my wondering how the picture would 
look if the only numbers between 0 and 1 were rational. This led to the construction 
of the fake Mandelbrot set. 

Acknowledgment. I would like to give special thanks to Marc Frantz, Indiana University, Bloomington, whose 

critique was above and beyond that of the usual referee and whose detailed comments about escape paths were 

more than helpful; they enabled me to organize a collection of ideas into a logical exposition. 

Appendix: Algorithm for the fractal Fake Mandelbrot set To create the fractal, 
we begin by drawing the boundary of M1 , c = (rei 0 ) 12 - (r2e ;20 ) 14 for 0 :S e < 2rr , 
and filling in the interior. 

Then we let q start at 2, increment q by 1 until 1 1  q2 is less than one pixel width. For 
each q ,  for each p that is relatively prime to q we are going to draw a disk of radius 
(sin(rrplq))lq2 attached to the boundary of M1 at the point c = (2reiZa - r2ei4a )l4. 
To draw each of these disks we use a recursive function whose arguments are: radius, 
internal_ angle, and center. The stopping point for the recursion is when radius is less 
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than one pixel width. The function first draws the disk and then calls itself with the 
new arguments : 

new _ radius = radius * sin(rrf/q) 
q 

new_ angle = angle + rr + 2rrpjq 
new_ center = center + (radius + new_ radius) * ei *new_angle 

An amusing variation is to color each of the bulbs a color based on the period of the 
attracting cycle of fc for c in that bulb. 
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In this article we explore the problem of chore division, which is closely related to a 
classical question, due to Steinhaus [10] , of how to cut a cake fairly. We focus on con
structive solutions, that is, those obtained via a well-defined procedure or algorithm. 
Among the many notions of fairness is envy-freeness: an envy-free cake division is a 
set of cuts and an allocation of the pieces that gives each person what she feels is the 
largest piece. It is non-trivial to find such a division, since the cake may not be homo
geneous and player valuations on subsets of cake will differ, in general. Much progress 
has been made on finding constructive algorithms for achieving envy-free cake divi
sions; most recently, Brams and Taylor [3] produced the first general n-person pro
cedure. The recent books by Brams and Taylor [4] and Robertson and Webb [8] give 
surveys on the cake-cutting literature. 

In contrast to cakes, which are desirable, the dual problem of chore division is 
concerned with dividing an object deemed undesirable. Here, each player would like 
to receive what he considers to be the smallest piece of, say, a set of chores. This 
problem appears to have been first introduced by Martin Gardner [6] . 

Much less work has been done to develop algorithms for chore division than for 
cake-cutting. Of course, for 2 people, the familiar /-cut-you-choose cake-cutting pro
cedure also works for dividing chores: one cuts the chores and the other chooses what 
she feels is the smallest piece. Oskui [8, p. 73] gave the first envy-free solutions for 
chore division among 3 people. Su [12] developed an envy-free chore-division algo
rithm for an arbitrary number of players ; however, it does not yield an exact solution, 
but only an E -approximate one. There appear to be no exact envy-free chore-division 
algorithms for more than three players in the literature; in unpublished manuscripts, 
Brams and Taylor [2] and Peterson and Su [7] offer n-person algorithms but these are 
not bounded in the number of steps they require. 

In this article, we develop a simple and bounded procedure for envy-free chore di
vision among 4 players. The reader will find that many of the ideas involved-moving 
knives, trimming and lumping, and a notion of "irrevocable advantage"-provide a 
nice introduction to similar techniques that arise in the literature on fair division prob
lems. As a warm-up to some of these ideas, we also present a 3-person solution that is 
simpler and more symmetrical than the procedure of Oskui. 

We assume throughout this paper that chores are infinitely divisible. This is not 
unreasonable, as a finite set of chores can be partitioned by dividing up each chore (for 
instance, a lawn to be mowed could be divided just as if it were a cake), or dividing the 
time spent on them. We also assume that player valuations over subsets of the chores 

1 1 7  



1 1 8 MATHEMATICS MAGAZI N E  

are additive, that is, no value i s  destroyed or created by cutting or lumping pieces 
together. (The proper context for modeling player valuations is measure theory, but we 
can avoid that for the purposes of this article. ) 

A 3-person chore-division procedure We first describe a simpler 3-person chore
division procedure, which introduces some ideas that are important later. 

Our 3-person chore-division procedure relies on Austin's procedure [1] for dividing 
a cake into two pieces so that each of two players believes it is a 50-50 split. For 
completeness, we review it here. Let one player hold two knives over the cake, with one 
at the left edge, such that the portion of cake between them is what she believes to be 
exactly half. If the second player agrees that it is exactly half, we are done. Otherwise, 
let the first player move the knives across the cake from left to right, keeping the 
portion between them exactly half (in her estimation), until the second player agrees it 
is exactly half. (There must be such a point because when the rightmost knife reaches 
the right edge, the leftmost knife must be where the rightmost knife began, hence 
the second player must by that point have changed preferences.) At this point cuts 
are made and the pieces of cake outside the knives are lumped together, yielding two 
pieces that both players agree are exactly equal. 

Austin's procedure is an example of what is sometimes called a "moving-knife" 
procedure in the cake-cutting literature [5] . Our 3-person chore-division algorithm is 
also a moving-knife procedure. The key idea is to divide the chores into six pieces and 
assign each player two of the pieces that he feels are at least as small as each pair of 
pieces the other players receive. 

A THREE-PERSON ENVY-FREE CHORE-DIVISION PROCEDURE 

Step 1 . Divide the chores into three portions using any 3-person envy-free cake
division procedure (that guarantees players a piece they think is largest), such 
as the Stromquist moving-knife procedure [11 ] .  Now label each portion by 
the name of the player to whom the cake-division procedure would assign that 
portion (this player believes that portion is largest) . 

Step 2. Let player i divide portion i into 2 pieces (which she feels is exactly half) and 
assign those pieces to the other two players such that they each feel they have 
received no more than half of portion i .  (This can be achieved via Austin's 
procedure: letting player i and one other player, say j ,  agree on a 50-50 split, 
let the remaining player choose the half she thinks is smallest, and give the 
other half to j . ) 

Step 3 .  Repeat Step 2 for each player, then end the procedure. 

We now verify that each player has been assigned two out of six total pieces such 
that each feels her share is smallest. 

Call the players i ,  j ,  and k. Player i will not envy player j because one piece of 
each of their pairs came from the portion labelled k, and i feels her half of that portion 
was no larger than j 's .  As for her other piece, player i feels it was no more than half 
of the portion it came from, and therefore cannot be as large as player j's other piece, 
which i felt was exactly half of the largest portion. The same argument holds for any 
permutation of i ,  j ,  and k .  See FIGURE 1 .  

This procedure requires at most 8 cuts (Step 1 uses 2 cuts, and Austin's proce
dure uses at most 2 cuts each time it is applied; in FIGURE 1 ,  some pieces may have 
been reassembled for simplicity). It is also less complicated than the discrete proce
dure of Oskui [8] . There are some 3-person moving-knife schemes that require fewer 
cuts [8, 9] , but our approach is distinguished by being symmetric with respect to the 
players and being based on a cake-cutting procedure. The former property simplifies 
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the verification of envy-freeness, while the latter property may help in generalizing the 
scheme to more players via known cake-cutting algorithms. 

A 4-Person Chore-division Procedure We now describe our 4-person chore
division procedure, which is also a moving-knife procedure and requires at most 16  
cuts . I t  draws ideas from both the Brams-Taylor-Zwicker 4-person envy-free moving
knife scheme for cakes [5] and the Oskui 3-person envy-free discrete chore-division 
scheme [8] . We also show how the notion of irrevocable advantage, important in 
cake-cutting [4] , can be applied in chore division. 

Suppose the players are named Alice, Betty, Carl, and Debbie. For convenience, we 
assume the chores are a rectangular block that may be divided by vertical cuts. Let 
Alice and Betty divide the chores into four pieces they both agree are all equal, by 
performing three applications of Austin's procedure (using at most 6 cuts) . 

Call the pieces X J .  X2, X3 , and X4 . Note that if Debbie and Carl disagree on which 
piece is the smallest, we can immediately allocate the pieces. Thus we may assume 
they agree that one piece is strictly smaller than the others, say X4 . Then each person 
thinks the following: 

Alice: X1 = X2 = X3 = X4 
Betty : X, = Xz = X3 = X4 
Carl : X4 < X, , Xz ,  X3 

Debbie: X4 < X, , Xz ,  X3 . 

Now, for each of X 1 ,  X 2 , and X 3 , let Debbie and Carl mark how they would trim them 
to make them the same size as X4 . As each piece is rectangular, assume the trimmings 
are marked from the top edge, so that a person receives the piece below her mark. 
See FIGURE 2. Hence, we can speak of one mark as being higher than another. The 
following procedure will yield an envy-free chore division (we've already described 
Step 1 ) :  
A FOUR-PERSON ENVY- FREE CHORE - D I V I S ION PROCED URE 

Step 1. Let Alice and Betty use three applications of Austin's procedure (6 cuts) to 
obtain 4 pieces (XI . X2 , X3 ,  X4) that Alice and Betty believe are exactly equal 
in size. If Carl and Debbie disagree on which piece is smallest, then allocate 
the pieces accordingly and end the procedure. Otherwise, call X4 the piece 
that Carl and Debbie agree is smallest. 

Step 2. Let Carl and Debbie mark X1 , X2 , X3 where they would cut them to create 
ties for smallest with X4 . Without loss of generality, suppose Debbie has more 
marks higher than Carl's . Trim the pieces at the higher marks (3 cuts), and set 
aside the trimmings. 
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Figure 2 Th i s  f igure shows a poss i b l e  set of mark i ngs made i n  Step 1 of o u r  4-person 
procedu re 

Step 3 .  Let Betty add back to one piece some of the corresponding trimming ( 1  cut) 
to create a two-way tie for smallest piece. 

Step 4. Let players choose from these pieces in the order Alice-Betty-Carl-Debbie, 
with Betty required to take the added-back piece if Alice didn't, and Carl 
required to choose a piece trimmed at his marking if it is available. This will 
allocate everything except the trimmings in an envy-free fashion. 

Step 5. Divide the trimmings (6 cuts), exploiting an irrevocable advantage of Betty 
over whomever receives X4 . (The concept of an irrevocable advantage is de
fined and explained later.) This will allocate the trimmings in an envy-free 
fashion. 

We now verify that this yields an envy-free solution. We assumed in Step 2 that 
Debbie has more higher marks than Carl (if not, just reverse the roles of Carl and 
Debbie in what follows). This produces two cases, the first in which Debbie has three 
higher marks and the second in which Debbie has two. 

Case I: Debbie has three higher marks. Assume that Debbie's marks are all at or 
above Carl's marks. Following Step 2, let Debbie trim X t .  X2 , and X3 at her marks 
to obtain a four-way tie for the smallest piece. Call the trimmed pieces X� , x;, and 
x; , and the trimmings T1 ,  T1 , and T3 , which are set aside for later. At this point, each 
person thinks: 

Alice: 

Betty : 

Carl: 

Debbie: 

x� . x; , x� < X4 

x� . x; , x� < x4 

Xc:S X� , x; , X� 

x� = x; = x� = x4 . 

Carl must believe X4 is the smallest, or tied for the smallest, because his marks were 
all at or below Debbie's (meaning he believes more should be trimmed to make them 
equal to X4). 

Of the remaining pieces X� , x; , x; , suppose without loss of generality that Betty 
believes x; ::::: x; ::::: X� . Following Step 3, let Betty return some of the trimmings T3 
to x; to create a two-way tie for the smallest piece. (We still call the modified piece 
x; , and its trimmings T3 .) Thus player valuations change: 

Alice: 

Betty : 

Carl: 

Debbie: 

x� . x; , x� < X4 

x; = x� ::::: x� < x4 

x4 ::::: x� . x; , x� 

x� = x; = x4 < x� . 



VO L .  75 ,  NO. 2 ,  APRI L 2 002 1 2 1 

Following Step 4, Alice chooses first (hence is envy-free), then Betty, who is required 
to take X� if it was not chosen by Alice. Since Betty has at least one of X� , X� to choose 
from, she is envy-free. Then Carl chooses, and will clearly still have his smallest piece 
X 4 available. Debbie will have one of her three smallest pieces available because Betty 
took X� if Alice did not. Thus all are non-envious of the portions they have recieved 
so far. 

Dividing the Trimmings. The trimmings still need to be divided and assigned. With
out loss of generality, suppose that Betty chose X� in the procedure above. Then Betty 
thinks 

Betty : T1 . Tz .:::; T3 . 

Note that because Betty believed X3 = X4, she could receive all of T3 and still not 
envy Carl. In fact, by the above inequality she could receive � (T1 + T2 + T3 ) .:::; T3 and 
still not envy him. We will say that Betty has an irrevocable advantage over Carl with 
respect to the trimmings. 

So, lump all the trimmings together (say, T = T1 + T2 + T3 ) , and let Alice and 
Debbie use Austin's procedure to divide T into four pieces that they both agree are 
all equal. Then let the players choose in the order Carl, Betty, and then (in any order) 
Debbie and Alice. 

With respect to the trimmings, Carl will envy no one because he chooses first. Betty, 
choosing the smallest of the remaining three pieces, will have a piece that she believes 
is at most � T and therefore will not envy Carl. Alice and Debbie will not envy Betty 
or Carl because they think all four pieces are equal. Thus the trimmings can be divided 
in an envy-free fashion. 

Case II: Debbie has two higher marks. Assume now that Debbie has two marks at 
or above Carl's marks. Without loss of generality suppose that Carl has a higher mark 
on X3 than Debbie, as in FIGURE 2. Following Step 2, let cuts be made at all three 
highest marks. Then 

Alice: X� . x; , X� < X4 

Betty : x� . x; . x� < X4 

Carl: x� = X4 .:::; x� . x; 

Debbie: x� = x; = X4 < x� .  

Following Step 3 ,  let Betty create a two-way tie for the smallest piece (as before) 
by returning to the smallest piece some of the corresponding trimmings. She may add 
either to X� . X� or X� . The X� and X� cases are equivalent, so we have two subcases. 

Suppose Betty adds to X� until it is as large as, say, X� . Then 

Alice: X� , x; , X� < X4 

Betty : x; = x� .:::; x� < X4 

Carl: X4 .:::; x� . x; . x� 

Debbie: X� = x; = X4 .:::; X� . 

These inequalities are identical to those in Case I, and thus our procedure works in the 
same way. Moreover, the trimmings can be handled just as before, since Betty has an 
irrevocable advantage over Carl (who receives X4). 

Otherwise, suppose Betty adds to X� until it is as large as, say, X� (the X� case is 
similar) . Then 
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Alice: x; ,  x; , x; < X4 

Betty : x; = x; .::: x; < X4 

Carl: x; = x4 .::: x; , x; 

Debbie: x; = X4 .::: x; , x; . 

Following Step 4, let Alice choose first. When Betty chooses, she will have one of her 
two smallest pieces available (and will take x; if available as the procedure requires) . 
Next, the procedure requires Carl to take X� if available (since it was the piece trimmed 
at his marking) and otherwise he recieves X 4 ;  either way he believes he has the smallest 
piece. As x; and x; are allocated by this point, we know that Debbie will receive 
either x; or X4, and hence is also envy-free. For the trimmings, note that Betty has an 
irrevocable advantage over whomever receives the X4 piece, so the trimmings can be 
divided using the method discussed earlier. 

This concludes the verification of envy-freeness for all cases. Note that we could 
alternately have presented tables for each case that list envy-free assignments for Betty, 
Carl, and Debbie given what Alice chose first. However, remembering those tables 
would not be as easy as remembering the steps of our procedure. 

A bounded n-person procedure? Our procedure gives the first known bounded pro
cedure for 4-person envy-free chore division, requiring at most 16 cuts . Actually, this 
can be reduced to 15 cuts with a modification much like Brams-Taylor-Zwicker's 5-cut 
modification [5] of the triple application of Austin's procedure. 

Although the reader may be tempted to try to further reduce the number of cuts 
needed for 4-person envy-free chore division, progress in this direction is not as impor
tant as the more compelling problem of finding any bounded procedure for more than 
4 players . While there do exist finite n-person envy-free chore-division procedures 
( [2] , [7] ), these are not bounded in the number of steps or cuts, that is, depending on 
player preferences, they could take arbitrarily long to resolve. For cake-cutting as well 
as chore division, the existence of bounded n-person envy-free division procedures 
remains a major unsolved problem that will probably require new techniques . 
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The Con secut ive I nteger Game 

D A V I D M .  C L A R K  
S U N Y  at New Paltz 

New Paltz, New York 12 561 
clark®newpaltz.edu 

Two previously unacquainted contestants, Xeno (X) and Yvonne (Y), sit at a 
table facing each other and play a game. You are the referee. Once the spectators 
are all seated, you randomly choose two positive, consecutive integers and, with a 
black marker, write one of the numbers on Xeno's forehead and the other number on 
Yvonne's forehead. Each player can read the other's number but not his or her own. 
[For example, you give Xeno 2475 and Yvonne 2476. Xeno sees 2476 and knows that 
his number is either 2475 or 2477, but he doesn't know which.] The first player to 
figure out his or her own number wins. The game proceeds in rounds. 

ROUND 1 You say, "Raise your hand if you know your number." 
If no hand is raised, we go on to Round 2. 
ROUND 2 You say, "Raise your hand if you know your number." 
The players can have all the time they like. When they both concede that they don't 
know their own numbers, we go on to the next round. 
ROUND 3 You say, "Raise your hand if you know your number." . . .  
There are no mirrors, signals or other communication beyond what has been explicitly 
stated. The game proceeds round after round, hour after hour. The players begin to 
look haggard and the crowd grows restless. A small boy complains that this game is 
boring, but is quickly silenced when his father suggests that they go watch the cricket 
game instead. Then suddenly, after many rounds, Yvonne jumps up, waves her hands 
wildly, and shouts, 

"I know ! I know ! My number is 2476 ! !" 
The crowd roars with excitement as the bewildered referee hands her the coveted Con
secutive Integer Game Trophy. 

How did Yvonne figure out her number? More generally, if the chosen numbers are 
n and n + 1 ,  is there always a winner? Who will it be? After how many rounds? The 
interested reader might well spend a few minutes pondering these questions before 
going further. 
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\ I 

A preliminary analysis of the game Instead of big numbers like 2475 and 2476, 
suppose X has a 1 and Y has a 2. X doesn't  know whether his number is 1 or 3. But Y 
sees a 1 and, knowing that her number is a positive integer, immediately concludes that 
it must be 2. Accordingly, she raises her hand and wins in Round 1. Now suppose Y 
has a 2 and X has a 3 .  Neither knows his or her own number in Round 1 .  But X knows 
that he has either a 1 or a 3, and that Y didn't  win in the Round 1 .  So, in Round 2, he 
concludes that his number must be 3 .  

Suppose that X has a 3 and Y has a 4. Y knows that her number i s  either 2 or 4 .  
Having read the previous paragraph she knows that i f  her number were 2 ,  then X would 
have figured out his number and won in Round 2. Since Round 2 ended with X failing 
to do this, she immediately concludes that her number is 4 and wins in Round 3 .  This 
appears to be a nice little exercise in mathematical induction. 

THEOREM 0 .  If the two numbers are n and n + 1, then the player whose number 
is n + 1 will win in Round n. 

The proof is not as simple as it first appears since there are really two different facts 
to be proven. We must show that the player with n + 1 will know his or her number in 
Round n, and we must also show that neither player can deduce their own number any 
sooner. We prove each of these facts by induction. 

LEMMA A .  If X 's number is n and there is no win before Round n, then Y 's number 
is n + 1 .  

Proof Since the numbers must be positive, this is clearly true for n = 1 .  Assume 
that it is true for n = k. Suppose that X's  number is k + 1 ,  and that Round k + 1 arrives 
with no previous winner. Y 's number is either k or k + 2. If it were k, then since the 
statement is true for k ,  player X would have seen a k and won in Round k .  Since he 
didn't, Y 's number must be k + 2. • 

LEMMA B .  If Y 's number is greater than n and there is no win before Round n, 
then X will not know his own number in Round n. 

Proof This is clearly true for n = 1 since there will be two distinct possible num
bers that X might have. Assume that it is true for n = k. Suppose that Y ' s  number m 
is greater than k +  1 and that there is no win before Round k + 1 .  Since m > k + 1 ,  
we also have m > k so, by induction, X did not know his number in Round k .  We 
must argue that X gained no new information in Round k that might have allowed him 
to deduce his number in Round k + 1 .  The only information he received in Round k 
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was that Y did not at that point know her number, m.  So we must argue that X would 
have already known, at start of Round k, that Y did not yet know her number. But this 
follows by induction since X's  number is either m - 1 or m + 1 ,  and both are greater 
than k.  • 

Proof of Theorem 0. Assume X has n and Y has n + 1 .  By Lemma A, player Y will 
know her number in Round n. By Lemma B, neither player will know their number 
before Round n and X will not even know his number in Round n .  Thus Y will win in 
Round n .  • 

We now have a relatively simple solution to what seemed initially to be an impos
sible problem. Or do we . . . ? Read on ! 

A careful analysis of the preliminary analysis Unfortunately all three of these pur
ported proofs suffer from a similar flaw. We have in each case failed to distinguish 
between what is true and what the players know to be true. For example, let S(n) be 
the statement of Lemma A. Induction tells us only that S(k) is true, whereas the ar
gument requires the assumption that X knows that S(k) is true. Similarly, let T(n) be 
the assertion of Lemma B .  The last statement of the proof requires not only that T(k) 
is true, but that X knows that T(k) is true. Theorem 0 itself does not follow from the 
truth of Lemmas A and B alone; a second look at the proof shows that it requires that 
player X knows that Lemma A is true. 

We will see that it is still possible to give a proof of Theorem 0, but that will require 
some additional hypotheses about the knowledge and abilities of the two players . It is 
tempting to add some assumption to the effect that both players are skilled logicians. 
Besides being vague, this would not be sufficient, as we would have to conclude that 
a skilled logician is necessarily able to prove both induction assumptions, which we 
ourselves have not yet proven. It would be sufficient to strengthen the assumptions to 
say that both players can prove S(n) and T (n) for all n .  But that would be absurd, as 
it would mean that we are assuming in advance that both lemmas are true ! 

To see what might be required, suppose that you sit down to play the consecutive 
integer game and you see the number 4 on your opponent's  forehead. Round 4 arrives 
with no previous win, and you would like to conclude that your number is 5 .  In order 
to do so, you must be confident that your number is not 3 .  This requires that you be 
certain that your opponent, seeing the number 3, would, in Round 3, have been able to 
reason as follows:  

My number is either 2 or 4. If it were 2,  then you would have known that your 
number was either 1 or 3. Since I didn 't know my number in Round 1, you would 
have known that your number was not 1 and therefore must have been 3, allowing 
you to win in Round 2. Since you didn 't win in Round 2, my number must not be 
2 so it must be 4. Therefore I will raise my hand and win in Round 3. 

Clearly some players would be able to think this through while others would not. If the 
number you see is less than 4, then you would be more confident that your opponent 
could draw the necessary conclusions. If it were much more than 4, you would need 
to assume that your opponent was able to carry out much more complex reasoning, 
which itself required assumptions about your reasoning ability. Thus, any satisfactory 
definition of a player will require some explicit statement that we can all understand 
as to just what it is that a player is supposed to be able to do. In the next section, we 
will give such an explicit statement, and then show that Theorem 0 is true provided 
that the players meet our qualifications .  
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A careful analysis of the game In order to document a player's abilities, we  might 
imagine establishing a Consecutive Integer Academy, called the CIA for short. Any 
potential players are free to enter the CIA, but they must pass appropriate examinations 
in order to progress. The CIA will administer a series of examinations, 

Exam 0, Exam 1 ,  Exam 2, Exam 3, . . .  , Exam oo,  

that students can take to prove their abilities. It will be  run according to the following 
rules. 

Rules of the CIA 

1 .  Each student must wear a badge showing the number of the highest exam he or she 
has passed. 

2. A student must pass Exam k before taking Exam k + 1 .  
3 .  Exam oo may be taken by any student at any time in lieu of all of the remaining 

exams. 

Students graduate when they pass Exam oo, whereupon they are awarded an oo-badge 
branding them as CIA Certified Players of the Consecutive Integer Game. 

The content of the exams never changes, and is a matter of public record. Let X 
and Y represent two students playing the Consecutive Integer Game. 

Exam 0 Demonstrate that you can count, that you know the rules of the game, and 
the rules of the CIA. 

Exam 1 Prove these theorems: 

THEOREM A1 . If X 's number is 1, then Y 's number is 2. 

THEOREM B 1 .  If Y 's number is greater than 1, then X will not know 
his own number in Round 1 .  

Exam 2 Prove these theorems: 

THEOREM A2 • Assume that X has passed Exam 1. If X 's number is 2 
and there was no win in Round 1, then Y 's number is 3. 

THEOREM B2 . Assume that X has passed Exam 1. If Y 's number is 
greater than 2 and there is no win in Round 1, then X will not know his own 
number in Round 2. 

Exam n, where n ::: 3. Prove these theorems : 

Exam oo 

THEOREM An . Assume that X has passed Exam n - 1 and that Y 
has passed Exam n - 2. If X 's number is n and there was no win before 
Round n, then Y 's number is n + 1 .  

THEOREM Bn . Assume that X has passed Exam n - 1 and that Y has 
passed Exam n - 2. If Y 's number is greater than n and there is no win 
before Round n, then X will not know his own number in Round n. 

PART A .  Prove that Theorem An is true for every positive integer n. 

PART B .  Prove that Theorem Bn is true for every positive integer n. 

We will now prove Theorems An and Bn for an arbitrary positive integer n ,  as is  
required to pass Exam oo.  Doing so will, in particular, demonstrate that it  is indeed 
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possible to graduate certified players . Of course, we do ask that the reader keep these 
proofs confidential. 

Theorem sequences An and Bn are each defined in three cases, so we need to give six 
different arguments. While these arguments will exhibit a rather repetitive structure, 
they will also grow in subtlety and complexity. Our hope is that mastery of the earlier 
ones will help the reader follow the later ones. Ultimately, we will prove Theorem C, 
which is exactly our failed Theorem 0 with a hypothesis added to make it true ! 

THEOREM A .  For every positive integer n, Theorem An is true. 
Proof. Theorem A1 is true since the numbers are positive and consecutive. 
To prove Theorem A2 , assume that X 's number is 2, that X has passed Exam 1 and 

that there was no win in Round 1 .  Then Y ' s  number is either 1 or 3. If it were 1 ,  then 
X -having passed Exam 1-would have known that his number was 2 in Round 1 .  
Since there was no win in Round 1 ,  he didn't know his number. Therefore Y 's number 
must be 3 .  

Now let n ::: 3 .  To prove Theorem An , assume that X has passed Exam n - 1 ,  that 
Y has passed Exam n - 2, that X's  number is n and that there was no win before 
Round n .  Then Y 's number is either n - 1 or n + 1 .  Suppose Y 's number were n - 1 
and consider what X knew in Round n - 1 .  By Rules 1 and 2, Y wears a badge in
dicating that she has passed Exam n - 2. By Rule 2, X has also passed Exam n - 3,  
and there was no win before Round n - 1 .  Since X has passed Exam n - 1 by proving 
Theorem An- I ,  he would have known that his number was n in Round n - 1 .  This was 
not the case, since there was no win before Round n. Therefore Y ' s  number could not 
be n - 1 ;  it must be n + 1 .  • 

Notice that Theorem A1 is very easy to prove and Theorem A2 is only slightly more 
involved. The proof of Theorem A3 is essentially the same as the proof of Theorem An 
for each n ::: 3 .  The same is true of the proofs for the sequence Theorems Bn ,  which 
are somewhat more involved than their Theorem An counterparts. 

THEOREM B .  For every positive integer n, Theorem Bn is true. 
Proof. Theorem B 1  is true since, in Round 1 ,  the only information available to X is 

that his number differs from Y 's number by 1 .  
To prove Theorem B2 , assume that X has passed Exam 1 ,  that Y ' s  number is m > 2, 

and that there is no win in Round 1 .  Then X did not know his number in Round 1 .  The 
only new information that X gained in Round 1 that might have helped him determine 
his own number in Round 2 is that Y did not know her number in Round 1 .  However 
X already knew this fact at the beginning of Round 1 .  Indeed, X knew that his number 
was at least m - 1 > 1 and he had passed Exam 1 by proving Theorem B � .  telling him 
that Y would not know her number in Round 1 .  Thus X still did not know his number 
in Round 2. 

Now let n ::: 3 .  To prove Theorem Bn ,  assume that there was no win before Round n 
and that Y 's number is m > n .  Thus X did not know his own number in Round n - 1 .  
We must argue that X gained no new information in Round n - 1 that might allow him 
to deduce his number in Round n .  The only information he received in Round n - 1 
was that Y did not at that point know her number, m.  So we must argue that X already 
knew, at the start of Round n - 1 ,  that Y did not yet know her number. 

Since X has passed Exam n - 1 ,  he has proven Theorem Bn-I · To show that X 
knew in advance that Y would not know her number in Round n - 1 ,  we verify the 
hypotheses of Theorem Bn- I  (with the names X and Y reversed) . Since Y wears a 
badge certifying that she has passed Exam n - 2, player X knows that she has proven 
Theorem Bn-Z · By Rule 2, player X has passed Exam n - 3 .  Since Y 's number is m, 
the smallest number X could have is m - 1 .  Since m > n ,  we have m - 1 > n - 1 .  
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Applying Theorem Bn- I ,  player X could therefore conclude at the start of the game 
that Y would not know her number in Round n - I .  Thus X still did not know his 
number in Round n .  • 

We can now prove an appropriately amended version of Theorem 0. 

THEOREM C. Assume that X and Y each wear an oo-badge, indicating that they 
are CIA Certified Players. If they play the Consecutive Integer Game with numbers n 
and n + I , then the player with n + I will win in Round n. 

Proof. Suppose X has n and Y has n + I . By Theorem B there will be no winner 
before Round n, and X will not know his number in Round n .  Since Y has passed 
Exam 0, she is able to count to n .  Since she has passed Exam n, she has proven Theo
rem An . Looking at X 's badge, Rule 3 tells her that X has passed Exam n - I .  Apply
ing Theorem An , she can conclude in Round n that her number is n + I . Consequently 
she will win in Round n .  • 

The fifty guilty wives The Consecutive Integer Game arose as a variant of a prob
lem from the folklore of mathematics. I heard it some years ago from a colleague who 
presented it as an amusing application of mathematical induction, but I have no knowl
edge of its original source. It is based on a story about an appallingly sexist place and 
time, where marital infidelity was commonly viewed as a woman's sin and a man's 
triumph. When it occurred, the guilty wife would carefully hide her shame but the 
guilty husband would boast to all the other men in the village. Well, not quite all the 
other men. They certainly didn't tell the High Priest. And because these men were not 
very courageous, they would conspire to keep the transgression a secret from the guilty 
wife's own husband. The result was that each husband knew exactly which wives were 
guilty and which were not, with the one exception of his own wife. Neither threats nor 
bribes would elicit information about his own wife from any other husband. 

It was the duty of the High Priest to see that marital fidelity was observed, and to 
take appropriate action when it was violated. But this High Priest found himself left 
with the following perplexing situation. For each husband X and wife Y, 

• i f  X was married to Y, then he  was willing to participate in  her conviction and 
punishment but he had no way to know if she was guilty; 

• if X was not married to Y, then he was unwilling to participate in her conviction or 
punishment although he did know if she was guilty. 

The High Priest needed to find some way to trick the husbands into divulging what 
they knew to the other husbands who would then administer justice. Fortunately he 
was a logician as well as a priest. Though not in the gossip loop, he did have spies, and 
as a result he knew that some marital infidelities had occurred in the village. But he 
didn't  know exactly who was involved. So he put together a diabolical plan to identify 
the guilty wives. Gathering the men and women of the village together, he said that he 
was sorry to inform them that there had in fact been at least one instance of marital 
infidelity. He then instructed each husband to think carefully about his own wife. If, 
at any point, he concluded that she was guilty, then he was to take her in front of his 
house that same night, tie her to a tree and hang a red lantern over her head. The next 
morning she would be there for all to witness her shame. 

At first the villagers all laughed. How was a husband supposed to discover his 
own wife's guilt? The next morning everyone was out to look. No red lanterns.  Again 
the following morning, no red lanterns.  This became a daily ritual . Although no red 
lanterns appeared, experience suggested that the High Priest knew what he was doing. 
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Arid he did. The fact was that in this village there were exactly fifty guilty wives. On the 
fiftieth morning, and no sooner, those fifty guilty wives, and no others, were standing 
in front of their fifty houses under fifty red lanterns !  

We leave i t  to the reader to explain why this happened. I t  just might help to assume 
that these fifty betrayed husbands, cowardly male chauvinist pigs as they were, were 
nevertheless all graduates of the Consecutive Integer Academy. 

Background and conclusions Our goal was to give some set of conditions under 
which the statement of Theorem 0 would be tnie. This is achieved in Theorem C. It 
remains to ask if there are any better, simpler, or more appropriate conditions that 
would serve the same purpose. In particular, are there conditions that allow a correct 
solution to the Consecutive Integer Game or the Fifty Guilty Wives Dilemma that is 
in fact a proper application of mathematical induction? It is worth noting that, in the 
process of establishing Theorems A, B and C, we never made any use of mathematical 
induction whatsoever ! 

I first contrived the Consecutive Integer Game as a means to introduce an under
graduate class to the concept of mathematical induction. I began with the argument 
preceding Theorem 0, and then led them through a conventional study of mathemati
cal induction. It was only when I came back to give a formal proof of Theorem 0 that I 
realized I was in trouble. In a recent Scientific American article, Stewart [4] presents a 
problem that is mathematically identical to the Fifty Guilty Wives (though admittedly 
in much better taste ! ) .  There he describes the argument as "an instance of mathematical 
induction," and outlines a proof similar to our proof of Lemma A. Another variation is 
given by Myerson ( [3, p. 66]) who also claims that it can be solved by mathematical 
induction. The analysis presented in this article would apply equally well to both of 
these probiems. 

The Consecutive Integer Game shows us just how seriously we can go astray by 
not recognizing the difference between what is true and what a player knows to be 
true. Aumann [1] brought this distinction to focus in game theory by introducing the 
notion of common knowledge, that is, facts that are true, that each player knows to 
be true, that each player knows that each player knows to be true, and so forth. The 
relevance of common knowledge to these problems is articulated by Myerson [3] ; 
see also Fudenberg arid Tirole [2) . Our Theorem 0 is true provided not only that both 
players have the appropriate skills, but also that the fact they do is common knowledge. 
The CIA oo-exam establishes the fact that they have these skills,  but it is the CIA oo
badges that make this fact common knowledge. 
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Proof Without Words :  The Area of a Sa l i non 

THEOREM . Let P,  Q ,  R, S be four points . on a line (in that order) such that 
P Q  = RS. Semicircles are drawn above the line with diameters P Q, RS, and PS, 
and another semicircle with diameter Q R is drawn below the line. A salinon is the 
figure bounded by these four semicircles .  Let the axis of symmetry of the salinon in
tersect its boundary at M and N. Then the area A of the salinon equals the area C of 
the circle with diameter M N [Archimedes, Liber Assumptorum, Proposition 14] .  

N 

M 

Proof 
I. 

II. 

A = C  

1t = - X 
2 

N 

M 

--ROGER B .  NELSEN 
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We start with a simple visual observation about polynomials .  Consider the polyno
mial 

P(x) = x6 - 140x5 + 8000x4 - 238000x3 + 3870000x2 - 32400000x + 108000000 
= (x - lO) (x - 20)2 (x - 30)3 

and some plots of y = P (x) at various scales. 

(a) 
-10 

Figure 1 Severa l v iews of P(x) 

(c) 

In FIGURE l (b) the graph appears roughly symmetric with respect to x � 25 . In FIG
URE l (c), however, as we zoom out farther, this is no longer evident. In fact, the latter 
plot resembles that of y = x6 , which is the usual observation. What we address here 
is whether or not the apparent line of symmetry in FIGURE l (b) is genuine, or fails 
to persist in any meaningful way as we zoom out to scales such as in FIGURE l (c). 
Certainly we couldn't detect such an effect visually at such great distances. 

A closer look from a distance When the absolute value of x is large, the graph of 
a polynomial begins to resemble that of the monomial consisting of the polynomial 's 
leading term. Of course, this is justified by the observation that P (x) is asymptotic 
to x6 . (By this we mean that limx-->±oo P (x)jx6 = 1 .) For the polynomial P(x) above, 
this behavior is exhibited by plotting P(x) along with B(x) = x6 in FIGURES 2(a) 
and 2(b) . The graphs of the two functions appear to merge as we zoom out until there 
is no apparent difference. 

Obviously, zooming out far enough would result in the two graphs being indistin
guishable, and that would be the case even if we let B(x) be any polynomial with the 
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(a) (b) 

Figure 2 The graphs of P (so l id)  and B (dotted) from afar 

same leading term as P(x) .  But in the distance chosen in FIGURE 2(a) the graph of P 
appears decidedly offset, horizontally, relative to B .  So the question is, exactly what is 
this apparent horizontal offset? We might approach it this way: Is there a choice of h 
so that the graph of (x - h)6 looks most like that of P (x)?  However, since the graph of 
(x - h)6 is symmetric with respect to the line x = h ,  we are more interested in asking: 
For what h is the line x = h the axis of asymptotic symmetry of the graph of P ?  It 
turns out that for this example, most reasonable interpretations (some presented below) 
of either of these questions yield the same result, h = 140/6. See FIGURE 3 .  

I 
I 

3 - l l 0 9 
I 
I 
I 
I 
I 
I 

2 · 
1�0 9 

1 . 

140 50 
6 

Figure 3 A p lot of P(x) (so l id) a long with the fu nct ion C(x) = (x - 1 40/6)6 (dashed) 

We shall henceforth assume that P (x) has even degree n ::: 2, and, for convenience, 
that its coefficients are real, with the leading coefficient being unity. 

Before we can find the line of asymptotic symmetry, it would be nice if we defined 
it. One approach would be to choose h so that P (x) and P (2h - x) differ by an amount 
considered small as x � ±oo. For instance, one could require h to satisfy 



VOL.  75,  NO. 2 ,  APRI L 2 002 

lim 
[P (x) - P (2h - x) J = O. 

x->±oo xn- 1 

1 3 3 

Another possibility would be to choose h so P (x) � C (x) = (x - h )n . For example, 
one would require h such that 

lim [P (x) - C (x) J = O. 
x->±00 xn-1 

(Notice that the usual approximating polynomial y = xn would not, in general, satisfy 
the above condition unless the power of x in the denominator was increased by one, 
and in this case, any h would do.) 

However, both of these tentative definitions involve a specific power of x in the 
denominator, hence would not be suitable for generalization to nonpolynomial func
tions. Our solution is to replace the limit in the domain with a limit in the range, in a 
way inverting the first potential definition above. We fix the (large) y-coordinate and 
ask that the corresponding x-coordinates be asymptotically symmetric with respect to 
some line x = h ,  in the sense described below. 

Assume that limx->±oo f (x) = +oo and that f (x) is eventually monotonic as 
x � ±oo. For k big enough, this will imply that the horizontal line y = k and the 
graph of f will have exactly two points of intersection, say, (z_

(k) , k) and (z+ (k) , k) . 

We suppress the dependence upon k in what follows. 

DEFINITION . If 

1. z+ + z_ h lm = ' k->oo 2 
we say x = h is the line of asymptotic symmetry of the graph of f .  

In the following theorem we apply this definition to find the line of asymptotic 
symmetry for polynomials of positive, even degree. 

THEOREM. Let P (x) = n7=1 (x - ai ) , where the ai s may repeat or may occur as 
pairs of complex conjugates. Then the line x = h is the line of asymptotic symmetry 
of P ,  provided that 

1 n 
h = - L: ai . 

n i= 1 
(Notice that h is the average of the roots of the polynomial, weighted by multiplicity.) 

Proof For lx I large enough, P will be a locally one-to-one function whose local 
inverse has an asymptotic series expansion, valid near ±oo, being 

- 1 _ 1 /n c1 Cz C3 C4 p± (y) - ±y + Co ± y 1 /n + y2!n ± y3/n + y4fn ± · . .  ' 

where the ci s are constants depending on P and c0 = � L:7=1 ai . (This expansion is 
justified in the appendix below.) This implies that 

Z+ + z-
2 

P+ 1 (k) + P�1 (k) 
2 

Cz C4 = Co + k2/n 
+ k4/n + . . . ' 

which approaches c0 = h as k � oo, and the proof is complete. • 
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It should b e  noted that the three possible definitions for asymptotic symmetry prof
fered above might appear different, but (at least) for polynomials, using the asymptotic 
expression for the Z ± ,  it is not hard to show all three are equivalent. 

Generalizations We conclude this note with some suggested projects for students. 

(a) What about asymptotic symmetry with respect to a point? For example, cubic 
polynomials have symmetry about their inflection points ; do all polynomials of 
odd degree have a point of asymptotic symmetry? 

(b) What would be the line (or point) of asymptotic symmetry for rational functions 
with degree of the numerator larger than the degree of the denominator, or more 
generally, functions that are written as products of linear factors with real coef
ficients when the exponents are not necessarily positive integers, so long as the 
factors are defined for all x and the degree of the resultant algebraic expression is 
positive? (In this case, the proof given above for polynomials of even degree can be 
easily modified to handle functions analogous to polynomials of positive, even de
gree, for instance, y = x 11\x - 1 )213 j (x - 2) 1 17 . See FIGURE 4 at the end of this 

note.) What happens if one allows other types of functions, e.g. ,  y = J x2 - x 1 13 
or y = x + cosh(x)?  

(c) What problems arise i f  one drops the assumption that the function is eventually 
monotonic as x � ±oo? 

Appendix We now justify the expansion in the theorem for the local inverse of P (x) .  
We first find the local inverse for x near positive infinity. For 1 :::: k < n ,  let bk be the 
coefficient of xk in P (x) .  So, for example, bn_ 1 = -nh,  where h = � L:7=1 a;. Then 

y = P(x) = xn + bn- 1Xn- 1 
+ . . .  + bo 

= xn [ l  + L( l jx) ] ,  

where L( l jx) = bn_ I fx + . . .  + b0jxn . Let u = +y11n , which is a one-to-one substi
tution for x near positive infinity, so that u = x [ 1  + L( l jx) ] 1 1n . 

Since L( l jx) approaches zero as x approaches infinity, eventually I L ( 1 jx) l < 1 
for x large enough, so one can expand [ 1  + L( l jx) ] 1 1n via the binomial theorem. The 
result is 

[ ( l jn ) ( l jn - 1 )  J u = x 1 + ( l jn)L ( l jx) + 
21 

L ( l jx)2 + · · · 

= x [ 1  + (bn_ I fn) ( l jx) + (higher powers of 1 /x)] 
= x + bn_ I fn + (higher powers of 1 /x) .  

One now solves for the inverse function of  the form 

C1 x = G(u) = u + co + - + · · ·  u 

by forming the equation u = P(G (u)) and recursively solving for the coefficients c0, 
c1 . etc . In particular, c0 = -bn_ J /n  = h . The local expansion of the inverse is then 
given by x = G (y 1 1n) .  

For the local inverse when x i s  near minus infinity, the only change i s  that now u 
becomes -y 11n , and the rest is identical . 
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Encore We cannot resist one more picture. Let 

f(x)  = x l f\x - 1 )2/3 / (x - 2) 1/7 , 

let n = 76/ 105 ,  and let h = 10/ 19 .  Below are the graphs of y = f(x)  (solid) and 
y = (x - h)n (dashed) . 

2 

- 1  

-2 

Figure 4 A more genera l  examp le  
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A CNN posting on the internet [1]  reports that the 1 996 trial of a rap star on 
manslaughter charges resulted in a hung jury. The posting says that the jury was com
posed of 7 men and 5 women and was hung at 9 to 3. Not reported is how many men 
or women voted with the majority. Several interesting probability problems come to 
mind. For example, what is the probability that exactly 5 jurors among the majority 
are men? 

The usual solution for such a problem utilizes methods that are associated with the 
hypergeometric probability distribution and involves designating successes and choos
ing a sample from a population. For the problem stated, it is clear that the population 
is the 1 2  jurors. But for the men and the majority, it is not so clear which should be 
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considered the successes and which the sample; either way seems artificial and con
trived. We solve this problem later, in a more natural way, using a symmetric form of 
the hypergeometric distribution derived in this note. 

Using the classical terminology, as we have, for describing the hypergeometric dis
tribution, we consider a population of size n, a number i of which are specified as 
successes. Our probability experiment is the random choice of a sample of size j from 
the population. We would like to know the probability that the random variable X, 
which is the number of successes among the sample, has value x .  This is given by the 
hypergeometric distribution, specifically, 

when 0, i + j - n :::: x :::: i ,  j .  
The hypergeometric distribution admits what may be called dual and symmetric 

forms.  In the dual formulation, we can interchange the sample with the successes and 
arrive at the equally valid 

P(X = x) = G) G =�) I G) . 
This duality has been brought out in these Notes by Davidson and Johnson [2] , is 
mentioned by Feller [3, page 44] , and is easily verified by expanding all the bino
mial coefficients into factorials . Common examples where duality emerges naturally 
include lottery games [ 4, Exercises 9 and 10, page 172] and selections by lot. Here is 
an instance of the latter. 

Three persons are chosen by lot from a group of 10.  What is the probability that a 
specific person from the group is chosen? 

Here, a sample of 3 is chosen from a population of 10 that includes 1 success, the 
specific person. Hence, the probability is P(X = 1 )  = G) (;) /C3°) = fo · Dually, the 
specific person, the sample, has 3 chances, the successes, out of 1 0  of being chosen. 
Thus, P(X = 1) = -fo = {i) (�) / (\0) . 

Returning to our beginning example, we see that the way the men and majority are 
regarded as the successes and sample does not matter, and once a decision is made, the 
probability is easily determined. However, having no grounds to decide, we prefer to 
respect the symmetry in the problem. 

By treating the successes and the sample symmetrically, we derive another formula 
for the hypergeometric distribution. Consider the population as a set U in which the 
members are independently classified in two ways yielding the subsets I and J of 
successes and of sample points, respectively. Then X gives the size of the intersec
tion I n J .  We note that I and J are combinations of sizes i and j chosen from U.  
To find P(X = x) ,  we consider all such pairs (/ ,  J)  of these combinations as equally 
likely outcomes. The size of the sample space of all these outcomes is 

The event that I n J has size x corresponds to all the ways of partitioning U into fo\lr 
subsets I n  J ,  I n  J, i n  J ,  and i n  J of sizes x ,  i - x ,  j - x ,  and n - i - j + x ,  
respectively (FIGURE 1 ) .  Recall that the multinomial coefficient 
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u 

I 

i 

J j 

X i - x 

j - x n - i - J + x 

j n - j  

Figure 1 Partit ion of U 

1 3 7 

n - i 

n 

counts the number of ways to partition a set of n elements into 4 disjoint subsets with 
nk elements in the kth part. It is ideal for counting the possible partitions of the kind 
indicated in the diagram. There are 

C. i - x , j - : n - i - j + x) 
such partitions .  Therefore, the probability that I n J has size x is equal to 

P(X = x) = ( n ) / (n) (n) · x , i - x , j - x , n - i - j + x i j 

The use of this symmetric form of the hypergeometric distribution seems more nat
ural than either of the dual ones in problems where no sample is chosen. Our opening 
example is such a problem. 

We assume that being a man and being among the majority are independent events. 
Let U be the group of jurors, I the subgroup of men, and J the subgroup of the major
ity. Therefore, the probability that exactly 5 jurors among the majority are men is 

( 12 ) I ( 1 2) ( 1 2) 2 1  
P(X = 5) = 

5 ,  2, 4, 1 7 9 
= 

44
. 

Here is another symmetric problem in which choosing a sample and designating 
successes would be artificial . A coed softball team of 17 players includes 8 females and 
14 players who throw right-handed. Assuming independence of these traits, what is the 
probability that exactly 6 players are right-handed-throwing females? The solution can 
be found on page 143 .  

Acknowledgment. We thank the anonymous referees for their useful suggestions. 
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Are there any quadrilaterals with integer sides having perimeter P equal to area A?  
A square of  side length 4 might come to mind. Are there any more? More generally, 
what is the number N(k) of integer-sided quadrilaterals whose ratio of perimeter to 
area is a fixed value, say PI A = k? This question is interesting mainly for cyclic 
quadrilaterals (that is, those that can be inscribed in a circle) since there are, for ex
ample, an infinite number of parallelograms satisfying P = kA for a given positive 
number k (as the reader can check) . In addition, the cyclic case generalizes the ques
tion for triangles, which has been treated successfully. 

In 1 97 1 ,  M. V. Subbarao [6] considered the problem of finding the number N(A) 
of triangles for which the sum of the integer sides a ,  b, and c is equal to ). times 
the triangle's  area, where ). is a given positive real number. These are called perfect 
triangles. He showed that N(A) is finite with N(A) = 0 for ). > ,JS, ). =1= 2-J3, and 
N().) = 1 for ). = 2,J3, the triangle being equilateral with edge 2. Although Subbarao 
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does not say so explicitly, the integers a , b , c are presumed to be greater than 1 since 
any triangle with sides 1 , a , a has A. > 4, as the reader may enjoy showing. 

Previous authors have considered special cases . In 1 904, Whitworth and Biddle [2] 
showed that the only triangles with perimeter equal to the area are the (5 , 12 ,  1 3) ,  
(6 , 8 , 1 0 ) ,  (6 , 25 , 29) , (7 , 1 5 ,  20) , and ( 9 ,  10 ,  1 7 )  triangles. In 1 955,  Fine [3] settled 
the case when A. = 2, answering a question posed by Phelps [5] , namely that the 
(3 ,  4, 5) triangle is the only one whose perimeter is twice the area. In his closing re
marks, Subbarao asked whether there is an analogy for quadrilaterals .  

The purpose of this paper is to extend these results and discuss the number N (k) 
of cyclic quadrilaterals with integer sides (including 1) satisfying P = kA,  where k 
is a positive real number, and P and A are the perimeter and area of a quadrilateral. 
These quadrilaterals are said to be k-perfect. We will show that N (k) is finite with 
N(k) = 0 for k > 4. Furthermore, when k is an integer we have N ( l )  = 7, N (3) = 2, 
and N(2) = N (4) = 1 .  

Eliminating P /A > 4 The area of a convex quadrilateral having side lengths 
a ,  b , c , d is given by 

A2 = (s - a) (s - b) (s - c) (s - d) - ( 1 12)abcd ( 1  + cos(8 + A.)) , 

where 8 and A. are opposite interior angles and s is the semi-perimeter s = (a + b + 
c + d)l2 [4] . If the quadrilateral is cyclic then 8 + A. = 1 80° (see [1] ,  p. 1 27) so the 
area equation reduces to Brahmagupta's  formula A2 = (s - a) (s - b) (s - c) (s - d) . 
Letting MI = -a + b + c + d, M2 = a  - b + c + d, M3 = a +  b - c + d, and M4 = 
a + b + c - d this equation may be written 

16A2 = MIM2M3M4 
= (-a + b + c + d) (a - b + c + d) (a + b - c + d) (a + b + c - d) . ( 1 )  

Let's assume a � b � c � d. Equation ( 1 )  shows that 

1 6A2 � MI (c + d) (a + d) (a + b) =  MI (a + b) (ac + ad +  cd + d2) 
� MI (a + b) (bd + ad +  cd + d2) = Mid(a + b) P .  (2) 

Inequality (2) reduces to an equality if and only if a = b = c = d . This is the square 
case where k = PI A = 4ala2 = 41a . Thus each square (with an integer side) is a 
k-perfect quadrilateral with k ::::: 4. If we exclude the square case then 1 6A2 > 
Mid(a + b) P ,  which yields 

k2 = P2IA2 < 
16P2 16P 

Mid(a + b)P Mid(a + b) 

= (�) ( 1 + c + d ) ::::: 321Mid .  (3) 
Mid a + b  

If Mid � 2 then k ::::: 4.  If Mid = 1 then MI = d = 1 ,  so P =  MI + 2a = 2a + 1 and 
b + c  = a . Thus 

k2 = p2 I A2 = 16P2 16(2a + 1 )2 
MIM2M3M4 (2c + 1 ) (2b + 1 ) (2a - 1 )  

= 16(2a + 1 )2 < 16(2a + 1 )2 < 1 6  
(4bc + 2a + 1 ) (2a - 1 )  - (4a + 1 ) (2a - 1 )  - ' 

because a � 2 (in the nonsquare case) . This shows that k ::::: 4 in all cases, so N (k) = 0 
for k > 4. 
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The few cases with 3 .:::: P /A .:::: 4 Assume for the moment that c = d = 1 .  Then 
1 6A2 = (-a + b + 2) (a - b + 2) (a + b)2 from ( 1 )  and P = a +  b + 2, so 

2 2 2 1 6(a + b + 2)2 
k = p I A = -----;:------o;-

(a + b)2 [4 - (a - b)2] "  

Since 4 - (a - b )2 > 0 there are two cases to consider. If a = b then we have k = 
2(b + l ) jb. This shows that k < 3 if b � 3 .  When b = 1 we have a square (with k = 4) 
and when b = 2, we obtain two noncongruent quadrilaterals with sides 2, 2, 1 ,  1 (and 
k = 3) : one when equal sides are opposite and one when they are not. If a = b + 1 
then k2 = 16(2b + 3)2 / (3 (2b + 1 )2) ,  which implies that k < 3 if b � 3 .  When b = 2 
we obtain two noncongruent quadrilaterals with sides 3 , 2, 1 ,  1 and k = 28/5J3, and 

when b = 1 we obtain a quadrilateral with sides 2, 1 ,  1 ,  1 and k = 20j3J3. 
We can show that these are the only perfect quadrilaterals when P /A � 3 .  That is ,  

N(k) = 0 for k � 3 except for the values k = 3, 28/5J3, 20/3J3, and 4. This can be 
done by examining the values of M1d in (3). If M1d � 4 then (3) shows that k < 3 so 
we should examine the choices M1d = 1 ,  2 , 3. 

Suppose that M1d = 1. Then M1 = d = 1. Having just dealt with the possibilities 
when c = 1 , we may assume that c � 2. We then have be � b + c, and the computa
tion at the close of the preceding section takes the form 

2 16(2a + 1 )2 16(2a + 1 )2 1 6(4a2 + 4a + 1 )  
k = < = < 9  

(4bc + 2a + 1 ) (2a - 1 )  - (6a + 1 ) (2a - 1 )  12a2 - 4a - 1 
when a � 3 . We have already treated the cases with a ::::; 2 except for the quadrilateral 
with sides 2, 2, 2, 1 .  But this case has M1d = 3 and 2 < PI A < 3 .  Thus k = P /A < 3 
except for the cases above. 

Now suppose that M1d = 2. Then M1 = 1 and d = 2 or M1 = 2 and d = 1 .  

Case 1 :  M1 = 1 implies that P = M1 + 2a = 1 + 2a and b + c = a - 1 .  Since 
d = 2, be � b + c and P � 8 so a � 4. Thus ( 1 )  becomes 

so 

1 6A2 = ( 1 ) (2c + 3) (2b + 3) (2b + 2c - 1 )  

2 2 16(2a + 1 )2 p I A = ----,----,--,------(4bc + 6(b + c) +  9) (2b + 2c - 1 )  
16(2a + 1 )2 < ----------�--�---------- (4(a - 1 )  + 6(a - 1 )  + 9) (2a - 3) 

1 6(2a + 1 )2 ------------- < 9 , ( lOa - 1 ) (2a - 3) 
since a �  4. 

Case 2:  M1 = 2 implies that P = M1 + 2a = 2 + 2a and b + c = a + 1 . Thus 

1 6A2 = (2) (2c) (2b) (2b + 2c - 2) , 

so 

2 2 16 (2a + 2)2 (2a + 2)2 4(a + 1 )2 
P /A = < < 9. 

( 1 6bc) (b + c - 1) - (b + c) (b + c - 1) (a + l)a 
Thus k < 3 in both cases. Similar reasoning establishes this inequality when M1 d = 3. 

We conclude that for k � 3 , N (k) = 0 except for the few values mentioned above. 
In contrast note that for 2 < k < 3, N (k) is positive for infinitely many values k as 
illustrated by the quadrilaterals with sides a , a , 1 ,  1 ,  where a > 2 is an integer. 
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When the perimeter-area ratio is an integer In this section, we assume that k is 
an integer; we will return to the general case in the next section. If d � 32 then (3) 
shows that k is not an integer, so we may assume d < 32. A short computer run (sides 
up to 50) suggests that the only cases for which PI A is an integer are those shown 
in TABLE 1 .  We will explain why this is indeed so. In each case where only two of 
the sides are equal, we obtain two noncongruent quadrilaterals :  one when the equal 
sides are opposite and one when they are not. Thus N(l) = 7, N(2) = N(4) = 1 ,  and 
N (3) = 2. 

TAB L E  1 :  The k-perfect quadr i l atera l s  when k i s  an  i nteger 

k = 4, 
k = 3 , 
k = 2, 
k = 1 , 
k = 1 , 
k = 1 , 
k = 1 , 

a = b = c = d = 1  
a = b = 2, c = d = 1 
a = b = c = d = 2  
a = b = c = d = 4 
a = b = 6, c = d = 3 
a = 8 , b = c = 5 ,  d = 2 
a = 14, b = 6, c = d = 5 .  

Let u s  see why TABLE 1 i s  complete. Actually, the case where d = 1 is easily 
handled. Writing M4 = P - 2, m = M1 M2M3 , and setting P = kA we obtain (from 
equation ( 1 )) , 

(4) 

showing P - 2 to be a power of 2 (an odd prime factor of P - 2 would divide P) .  
Hence P is even (so each M; is even also) and P /2 is odd. The left-hand side of (4) 
contains exactly six factors of 2; thus P - 2 is either 2, 4, or 8 (since m is a multiple of 
8). If P = 4 or 6, then a :::: 2, and these cases were described in the preceding section. 
If P = 10 then M1 = P - 2a = 10 - 2a so Md2 = 5 - a  forcing a :::: 4, and these 
few cases are easily ruled out. 

Thus for the remainder of this section we assume that d � 2. Then (3) shows that 
k < 4. Now we can see that P is even (when k is an integer). For if we assume that P 
is odd then so is each M; , so ( 1 )  shows 16P2 = k2M1M2M3M4 giving k = 0 (mod 4) . 
This contradicts the fact that k < 4. Thus P and each M; are even. In particular, 

M1 � 2 so k < J32jM1d :::: 4jJ(i. Since k � 1 we have d < 1 6. Also note that 
when d � 4 we have k = 1 .  

We will examine the cases d :::: 1 5 .  Our plan is to find an upper bound for the 
perimeter in each case. A computer run can then produce any perfect quadrilateral. 
Writing P = kA and using ( 1 )  we obtain 

(5) 

where m = M1M2M3 . 
If d = 2, then similar reasoning surrounding (4) shows that, since 16P2 = 

k2 (P - 4)m ,  P - 4 is a power of 2. Since P � 8 we have P = 4 + 2i with i � 2. 
If i � 3 then i :::: 5 since P = 4(4 + 2i-2) ,  showing P /4 to be odd; this gives at 
most eight factors of 2 on the left-hand side of (5). Since m is a multiple of 8, P - 4 
contains at most five factors of 2. We obtain P = 8 ,  12 ,  20, 36 as the possibilities, 
and TABLE 1 shows the outcome. Similarly, we can handle d = 4 giving possible 
values P = 16, 24, 40, 72 , 1 36. If d = 8, then P = 16  + 2; , for i = 4, 5, 6, 7 , 8 , 9 so 
p :::: 528. 
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Suppose d = 3 .  Then equation (5) becomes 

16P2 = k2 (P - 6)m ,  (6) 

so the only primes dividing P - 6 are 2 and 3. We have P - 6 = 2i 3j , where i :=:: 1 ,  
j :::: 0 .  Writing P = 6 + 2i 3j we see that j .:=:: 2 ,  since if 27 divides P - 6 then 9 
divides P,  but P = 3(2 + 2i 3j- I ) cannot contain two factors of 3 .  Also, if i > 1 then 
i .:=:: 3 since P = 2(3 + 2i- I 3j ) ,  showing P 12  to be odd; this gives at most six factors 
of 2 on the left-hand side of (6) , so P - 6 contains at most three factors of 2. Thus 
P = 6 + 2; 3j with i .:=:: 3 and j .:=:: 2, so the maximum possible value of P is 78. 

A similar argument applies if  d is any odd prime. For example, if  d = 5 then P = 
10 + 2; 5j with i .:=:: 3 and j .:=:: 2, so P .:::: 2 10. The upper bounds for d = 7, 1 1 , and 1 3  
are 406, 990, and 1 378, respectively. 

Let us deal with the case with d = 2q , where q is an odd prime. Equation (5) 
becomes 

16P2 = (P - 4q)m,  (7) 

so the only primes dividing P - 4q are 2 and q. We have P - 4q = 2; qj , where 
i :::: 1 , j :::: 0. Writing P = 4q + 2; qj , we see that j .:=:: 2, since if q3 

divides P - 4q 
then q2 divides P, but P = q ( 4 + 2; qj - I ) cannot contain two factors of q .  Also, if 
i :::: 3 then i .:=:: 5 since P = 4(q + 2i -2qj ) ,  showing P 14 to be  odd; this gives at most 
eight factors of 2 on the left-hand side of (7), so P - 4q contains at most five factors 
of 2. This shows that P = 4q + 2i qj with i .:::: 5 and j .:::: 2. When d = 6 (q = 3) , 
the maximum possible value of P is 300. If d = 10 the maximum is 820, and when 
d = 14 the maximum is 1596. 

Similar reasoning shows that if d = 9, then P = 18 + 2i 3j , where i .:=:: 3 , j .:=:: 4, 
and the largest of these is 666. If d = 12, then P = 24 + 2; 3j , where i .:=:: 7 and j .:=:: 2, 
giving the upper bound 1 1 76. If d = 15 , then P = 30 + 2i 3j 51 , with a maximum of 
1 830. 

These upper bounds for P are summarized in TABLE 2. Since a < b + c + d, we 
have a < P 12, which gives an upper bound for a in any computer run. Since k :::: 1 ,  
(3) indicates that M1d < 32; for d :=:: 4 we can then obtain the upper bound c .:=:: P 14 
as follows:  We have P - 2d + M1 = M4 + M1 = 2(b + c) ,  so 

2c .:::: b + c = (P - 2d + M1 ) 12 .:::: P 12. 

Note that ( -2d + M1 )d = -2d2 + M1d < -2d2 + 32 .:::: 0, so -2d + M1 .:::: 0 if 
d :::: 4. Our computer run found that for d .:=:: 1 5 ,  the only perfect quadrilaterals are 
those shown in TABLE 1 .  

TAB L E  2 :  U pper bou nds for P 

d 1 2 3 4 5 6 7 8 9 10 1 1  1 2  13 14 15  
p 10  36 78 1 36 2 10 300 406 528 666 820 990 1 176 1 378 1596 1 830 

The general case Our work has shown how the perimeter P of a k-perfect quadrilat
eral is bounded when k = PI A is an integer. For the general case, equation (5) shows 
that k2 is rational. Let k2 = r Is where r and s are integers. We can find an upper 
bound on P by reasoning as before. Recall from (3) that k2 .:::: 32ld, so d .:=:: 321 k2 ; in 
the square case d = 41 k. Thus d is bounded. Equation (5) becomes 

1 6s P2 = r (P - 2d)m .  (8) 
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We see that any prime divisor of P - 2d that does not divide 1 6s must divide P and 
hence d. Thus, the number of distinct primes of P - 2d is limited to those of 2s and d. 
As in the earlier cases, (8) shows that the multiplicity of  such a prime is bounded. 
[Let d = q; u and P - 2d = qj v,  where q is a prime, i and j are maximal, and j > i .  
Then P = q; (2u - qj -i v ) .  Equation (8) shows that j can not exceed 2i + the number 
of factors of q in 1 6s . ]  For a given value k, P - 2d (and hence P) is bounded. This 
shows that N (k) is finite. 
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A Hypergeometr ic  Problem So lved (from p .  1 3 7) 
A coed softball team of 17  players includes 8 females and 14 players who throw 
right-handed. Assuming independence of these traits, what is the probability that 
exactly 6 players are right-handed-throwing females? 

Solution. 
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Proof Without  Words :  The Area of a n  Arbe l os 

THEOREM . Let P ,  Q, and R be three points on a line, with Q lying between P 
and R .  Semicircles are drawn on the same side of the line with with diameters P Q, 
QR,  and P R .  An arbelos is the figure bounded by these three semicircles. Draw the 
perpendicular to P R at Q, meeting the largest semicircle at S. Then the area A of the 
arbelos equals the area C of the circle with diameter QS [Archimedes, Liber Assump
torum, Proposition 4] . 

p Q 

Proof. 

R 

A +  A 1 + Az = A 1 + C1 + Az + Cz 
: . A =  C1 + Cz = C 

A = C  

--ROGER B .  NELSEN 

LEWIS & CLARK COLLEGE 
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To be considered for publication, solutions should be received by September 1, 
2002. 

1643. Proposed by Arpad Benyi, University of Kansas, Lawrence, KS, and loan Ca§U, 
West University of Timi§oara, Timi§oara, Romania. 

The sequence (xnk� o of nonnegative real numbers satisfies the inequalities 

n :::: 2, 

where c is a positive constant. Show that for integers n and k, with 0 _::: k _::: n ,  
< k(n -k)/2 k/n (n -k)/n Xk _ C Xn X o 

1644. Proposed by Michael Golomb, Purdue University, West Lafayette, IN. 
Assume that the continuous, real valued functions fi, i = 1 ,  2, are defined on the 

domain V = { (x , y) : 0 _::: x _::: y _::: 1 }  and satisfy the following: 

( 1 )  fi (x ,  x) = 0, 0 _::: x _::: 1 ,  

(2) fi (O, x )  + fi (x ,  1 )  = 1 ,  0 _::: x _::: 1 ,  

(3) fi (x , y )  i s  strictly decreasing in x and strictly increasing in y .  
Show that there i s  a point (x0 , y0) E V such that ft (x o, Y o) = fz(x o, Y o) = � ·  

1645. Proposed by Philip Straffin, Stephen Goodloe, and Tamas Varga, Beloit College, 
Beloit, WI. 

A graph is called magic if it has n :::: 1 edges and its edges can be labeled by the 
integers 1 ,  2, . . .  , n with each integer used once, and so that the sum of the labels of 
the edges at any vertex is the same. Are there any magic graphs that are not connected? 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 

undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 

succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 

separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames, IA 50011, or mailed electronically (ideally as a �TEX file) to 

ehj ohnst(Diastate . edu. All communications should include the readers name, full address, and an e-mail 

address and/or FAX number. 
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1646. Proposed by Erwin Just (Emeritus), Bronx Community College, New York, NY. 

Let a > 0, b, k > 0, and m > 0 be integers, and assume that the arithmetic progres
sion {an + b}�0 contains the kth power of an integer. Prove that there are an infinite 
number of values of n for which an + b is the sum of m kth powers of nonzero integers. 

1647. Proposed by Leroy Quet, Denver, CO. 
Prove that for all x > 0, 

Qu ick ies 
Answers to the Quickies are on page 1 5 1 .  

Q919. Proposed by Razvan Gelca, Texas Tech University, Lubbuck, TX. 

Let ABC be a right triangle with right angle at A. On BC construct equilateral 
triangle BCD exterior to ABC.  Prove that the lengths of AB,  AC, and AD cannot all 
be rational numbers. 

Q920. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, 
Canada. 

The ellipse � + � = 1 is inscribed in a parallelogram. Determine the area 
of the parallelogram if two of the points of tangency are (a cos u , b sin u) and 
(a cos v ,  b sin v) ,  with 0 ::s u < v < rr .  

So l ut ions  
Rational Bounds for the Sine Function April 2001 

1618. Proposed by Michael Golomb, Purdue University, West Lafayette, IN. 
Prove that for 0 < x < rr ,  

rr - x ( x ) rr - x 
x-- < sin x < 3 - - x-- . 

rr + x rr rr + x 

Solution by Tom Jager, Calvin College, Grand Rapids, MI. 
We prove the stronger inequality 

x (rr - x) x (rr - x) (2rr - x) --- < sin x < ------

rr 2 0 < X < Jr .  

We prove the left inequality first. Using the Maclaurin series for sin x we have 

x (rr - x) ( oo x
2k + l  ) x

2 

sin x - = L) - 1  )k - x + -
rr k=O (2k + 1 ) !  rr 

= x
2 (� - �) + � (4�4

:� ) !  ( 1 - (4k + 2�;4k + 3) ) · 



VOL.  75,  NO. 2 ,  APRI L 2 002 1 4 7 

For 0 < X ::s ]"( /2, it is clear that this expression is positive. Because sin X - x (rrlt-x) is 
symmetric about x = rr /2, it follows that the left inequality in ( *) holds. 

We next prove the right inequality. Using the Taylor expansion about rr for sin x we 
obtain 

. x (rr - x) (2rr - x) 
sm x - ___:. __ -'--: __ .........;.. 

rr2 

= (f(- 1 )k+ l (x - rr)2k+ l ) - (rr - x) (1 - (x - rr)2 ) 
k=O (2k + 1 ) ! rr2 

= (rr - x) - - - + - (x - rr) 3 ( 1 1 1 2) 
rr2 6 1 20 

� 1 4k- 1 (1 (x - rr)2 ) - f;z (4k - 1 ) ! (rr - x) - 4k(4k + 1 ) · 

If 1 ::S x < rr then ;2 - k + 1�0 (x - rr )2 < 0 proving that the right inequality in ( *) 
holds for such x .  To prove the inequality for 0 < x ::s 1 use the Maclaurin series for 
sin x to see 

. x (rr - x) (2rr - x) 
sm x - ---........,--.........;.. 

rr2 
3 ( 1 1 ) xs 00 x4k- ! ( x2 ) = -x + rrx2 - 3 !  + rr2 

x3 + 5 ! - 8 (4k - 1 ) ! 1 -
4k(4k + 1 ) 

< x ((- 1 + �x
) 

+ x2 (-! - _!_ + �)) < 0 
rr 6 rr2 1 20 

for x in this range. This completes the proof of the right inequality in ( * ). 
Also solved by Enhand Araiine (Austria), Paul Bracken (Canada), Daniele Donini (Italy), Robert L Doucette, 

Ovidiu Furdui, Stephen Kaczkowski, Phil McCartney, Heinz-Jiirgen Seiffert (Germany), Ajaj A. Tarabay and 

Bassem B. Ghalayini (Lebanon), Problem Solving Seminar at UAB, Xianfu Wang (Canada), Michael Woltermann, 

Li Zhou, and the proposer. 

The Hyperbolic Tangent in Recursion April 2001 

1619. Proposed by Costas Efthimiou, Department of Physics, University of Central 
Florida, Orlando, FL. 

Consider the real sequences (akh?:o that satisfy the recurrence relation 

COS On + COS Om cos an+m = -------1 + cos an cos am 
for all nonnegative integers n , m .  Such a sequence will be called minimal if 0 ::s ak < 
rr for each k .  Determine all minimal sequences. 

Solution by Reza Akhlaghi, Prestonsburg Community College, Prestonsburg, KY. 
Let c = l -cos ak

. Then k l +cos ak 

1 _ cos an +cos am 
l +cos an cos am Cm+n = ---'-----"'---'=-1 + cos an +cos am 1 +cos an cos am 

1 - cos an 1 + cos an 

It follows that Cn = coc1 . Because c0 = c5 , we have c0 = 0 or c0 = 1 . 
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If co = 0 ,  then Cn = 0 for n = 0, 1 , 2 ,  . . .  and it follows that an = 0 for all n .  
If co = 1 and c1 = 0 ,  then a0 = rr /2  and an = 0 for n = 1 , 2 , . . . .  
If c0 = 1 and c1 "I 0, then because c1 > 0, we have c1 = e-ze for some real c. Then 

Cn = e-Zen and 

1 - e-2en een - e-en 
cos an = 2 = = tanh(cn ) .  

1 + e- en een + e-en 

Hence a0 = rr/2 and an = arccos(tanh(cn)) ,  n = 1 , 2, . . . .  
Also solved by Michael Bataille (France), Jeffrey Clark, Jim Delany, Charles R. Diminnie, Daniele Donini 

(Italy), Robert L. Doucette, Ovidiu Furdui, Tom Jager, Howard C. Morris, Markus Neher (Germany), Heinz

Jiirgen Seiffert (Germany), Problem Solving Seminar at UAB, Li Zhou, and the proposer. 

Medians Weighted on the Side April 2001 

1620. Proposed by Mihaly Bencze, Romania. 
In triangle ABC, let a =  BC,  b = CA, and c = AB .  Let ma , mb, and me be, re

spectively, the length of the medians from A, B, and C, let s be the semi perimeter, and 
let R be the circumradius of the triangle . Prove that 

I. Solution by Li Zhou, Polk Community College, Winter Haven, FL. 
We prove that ama :::; s R .  The inequalities bmb :::; s R and cme :::; s R can be 

established in a similar way. It is well known that 

a abc 
and R = -- = ...,..---.,..-:--,... 

2 sin A 4[ABC] ' 

where [ABC] denotes the area of triangle ABC.  Using Heron's formula for the 
area, the inequality am a :::; s R is transformed into 

1 abc 2ay 2b2 + 2c2 - a2 < s -;:=;==�:;==;�====i= 
- Js(s - a) (s - b) (s - c) 

This is equivalent to the inequality 

b2c2 (a + b + c) - (2b2 + 2c2 - a2) (a + b - c) (b + c - a) (c + a  - b) :=:: 0. 

This last inequality can be obtained by adding the three inequalities: 

b2c2 (a + b - c) - b2 (a + b - c) (b + c - a) (c + a  - b) = 
b2 (a + b - c) (a - b)2 :::: 0, 

b2c2 (c + a  - b) - c2 (a + b - c) (b + c - a) (c + a  - b) = 
c2 (c + a  - b) (a - c)2 :=:: 0, 

and 

b2c2 (b + c - a) - (b2 + c2 - a2) (a + b - c) (b + c - a) (c + a  - b) 
= (b + c - a) [b2c2 + (b2 + c2 - a2)2 - 2bc(b2 + c2 - a2) ] 
:=:: (b + c - a) [2bc lb2 + c2 - a2 1 - 2bc(b2 + c2 - a2) ] :::: 0. 

The inequalities also reveal that ama = s R if and only if triangle ABC is equilat
eral. 
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II. Solution by the proposer. 
Let A" B" and C1 , respectively, be the midpoints of BC, CA, and AB .  Points 

B2 and C2 are chosen so that segment AB is a perpendicular bisector of A 1B2 and 
segment AC is a perpendicular bisector of A 1 C2 . Let A1 B2 intersect AB in D and 
A 1C2 intersect AC in E. Because B1C2 = B1A 1 and C1B2 = C1A 1 we have 

2DE = BzCz :S C2B1 + B1 C1 + C1 B2 
= A 1B1 + B1 C1 + c1A 1 = PA1 B1 c1 = � PABc = s ,  

( 1 )  

where Pxr z denotes the perimeter o f  triangle X Y Z .  

A 

B1 
- •  -

c2 
-- -E 

B c 

Next note that !._A 1 DB = !._A 1 EC = 90° ,  so quadrilateral ADA 1 E is cyclic. 
Thus !._DA 1 E = 1 80° - !._A and !._A 1AE = !._A 1 DE.  Applying the Law of Sines 
in triangle A 1 DE and then in triangle A 1 A E, we have 

DE DE 
= -----

sin A sin(D A 1 E) 

Using ( 1 )  we have 

a s :=::: 2D E = 2m a sin A = 2m a lR
, 

and it follows that am a :::: s R .  A similar argument shows that bmb :::: s R and erne :::: 
s R,  establishing the desired inequality. 

Also solved by Herb Bailey, Daniele Donini (Italy), and Volkhard Schindler (Germany). There was one incor

rect submission. 

Fibonacci Numbers from Binomial Coefficients April 2001 

1621. Proposed by Donald Knuth, Stanford University, Stanford, CA. 

Prove that if a, b, and n are arbitrary nonnegative integers, then the sum 

is a Fibonacci number or the negative of a Fibonacci number. 
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Solution by Michael D. Hirschhorn, The University of New South Wales, Sydney, Aus
tralia. 

Let 

S = S(n , a) = f ( n ) · 
k=-oo a +  5k 

When n = 0 or n = 1, S takes on only the values 0 and 1. For n � 2, S takes on only 
three values, which we denote by Xn , Yn , and Zn , with Xn > Yn > Zn . When n = 2k is 
even, S assumes the value Xn when the sum contains the term {�k) , the value Yn when 

the sum contains {k�1) or {k�1) , and the value Zn when the sum contains the term {k�2) 
or {k�2) . When n = 2k + 1 is odd, S takes on the value Xn when the sum contains the 

term ekt) or e::1
1) , the value Yn when the sum contains (��11 ) or ek�21) , and the value 

Zn when the sum contains the term ek�D - It follows that for n even, 

Yn = Xn- l + Yn- 1 • Zn = Yn- l + Zn- l , 

while for n odd, 

Xn = Xn- l + Yn- 1 • Yn = Yn- 1 + zn- l • Zn = 2zn- l · 

With these results it can be shown by induction that for n odd, 

Xn = 2n- l F2 - 2n-2 F3 - · · · - 2Fn + Fn+ l • 

Yn = 2n- l F2 - 2n-2 F3 - · · · - 2Fn + Fn- l • 

Zn = 2n- l F2 - 2n-2 F3 - · · · - 2Fn , 

where Fn is the nth Fibonacci number, and for n even, 

Xn = 2n- l F2 - 2n-2 F3 - · · · + 2Fn , 

Yn = 2n- l F2 - 2n-2 F3 - · · · + 2Fn - Fn- 1 • 

Zn = 2n- l F2 - 2n-2 F3 - · · · + 2Fn - Fn+ l · 

It follows that for nonnegative integers n ,  a , and b, S(n ,  a) - S(n ,  b) is a Fibonacci 
number or the negative of a Fibonacci number. 

It is possible to give other formulations of the solution. Several papers have been 
written on this subject. See, for example, 

l .  George E. Andrews, Some formulae for the Fibonacci sequence with generalizations, The Fibonacci Quar

terly, 7 (1969), 113-130. 

2. Hansraj Gupta, The Andrews formula for Fibonacci numbers, The Fibonacci Quarterly, 16 (1978), 552-555. 

3. Michael D. Hirschhorn, The Andrews formula for Fibonacci numbers, The Fibonacci Quarterly, 19 (1981), 
1-2. 

Also solved by Jany C. Binz (Switzerland), David M. Bloom, Fred T. Howard, Reiner Martin, Rob Pratt, 

Heinz-Jiirgen Seiffert (Germany), Albert Stadler (Switzerland), Michael Woltermann, and the proposer. 

A Positive Definite Infimum Apri1 2001 
1622. Proposed by Gatz Trenkler, Dortmund, Germany. 

On the family Pn of n x n positive definite matrices, define the partial order -:::_L by 

M -:::_L N if and only if N - M is positive semi-definite. 
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(This is a Loewner ordering on Pn .) Find a matrix C in Pn that is the greatest lower 
bound, with respect to SL ,  for the set 

Solution by Tom Jager, Calvin College, Grand Rapi!}s, MI. 
The greatest lower bound is C = ¥In and is achieved when A = � In . First observe 

that if A =  ! In , then B = A  and 

Now let A E Pn and B = In - A E Pn . Because A and B are Hermitian and positive 
definite, there is a unitary matrix U so that U* AU = D(c1 , c2 , . . .  , en ) =  D(c; ) is a 
diagonal matrix with real diagonal entries c; satisfying 0 < c; < 1 .  Then 

T = (A + A- 1 )2 + (B + s- 1 )2 

= U [(D(c; ) + D( l jc; ) )2 + (D( 1 - c; ) + D( l j ( l - c; )))2] U* 

Define f by f(c) = (c + 1 jc)2 + ( 1  - c + 1 / ( 1  - c))2 , 0 < c < 1 . On this interval 
f assumes its minimum value of 25/2 when c = 1 /2. Thus, U *TU = D(a; ) ,  where 
each a; :::: 25/2. Thus T - '¥-In is positive semi-definite and '¥-In SL T .  

Also solved by the proposer. 

Answers 
Solutions to the Quickies from page 1 46. 

A919. By the Law of Cosines, 

AD2 = AB2 + BD2 - 2AB · BD cos(!..ABC + 60°) 

= AB2 + BC2 - 2AB . BC (cos(!..ABC) cos 60° - sin(!..ABC) sin 60°) 

= AB2 + AC2 + ,.JiAB · AC . 

It follows that AB,  AC, and AD cannot all be rational. 

A920. Under the transformation (x , y) ---+ (bxja , y) , the parallelogram is trans
formed to another parallelogram and the ellipse is transformed to an inscribed circle of 
radius b. The circle is tangent to the image parallelogram at the points ( b cos u , b sin u) 
and ( b cos v ,  b sin v) .  Draw radii to the four point of tangency. The result i s  two 
quadrilaterals of area b2 tanCV;u ) and two of area b2 tan(n-�+u ) , for a total area of 
4b2 esc( v - u ). Because ratios of areas are preserved under the transformation, the 
desired area is 4ab csc(v - u) .  
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section to call attention to interesting mathematical exposition that occurs outside the main

stream of mathematics literature. Readers are invited to suggest items for review to the editors. 

Ascher, Marcia, The Kolam tradition, American Scientist 90 (January-February 2002) 56-63 ; 
http : //ameri cansc ient i st . org/art icles/02art icles/Ascher . html . 

The women of Tamil Nadu (in southeastern India) daily decorate their thresholds with elaborate 
symmetrical figures, called kolam, made by sprinkling rice powder. Families of these figures 
have been analyzed by computer scientists as picture languages. The families can be described 
formally as context-free deterministic Lindenmayer systems, that is, symbol replacement sys
tems in which replacement rules are applied in parallel at each step. A symbol string can be 
converted to a graphic like a kolam figure by interpreting each symbol as a motion command 
to a graphics turtle. A group of researchers in Madras was inspired by the process of drawing 
kolam figures to work on array grammars, replacement systems in which the items being re
placed are subarrays of symbols rather than strings of symbols .  These grammars can describe 
how kolam figures reproduce units of a pattern, and the algorithmic nature of the grammars 
systematizes the procedures and techniques behind kolam drawing. 

Kosko, Bart, How many blonds [sic] mess up a Nash equilibrium, Los Angeles Times ( 1 3  Febru
ary 2002) , http : //www . lat imes . com/news /printededit ion/ calif ornia/la-0000 1 1 031 
feb13 . st ory . Abbott, Russ, and Morrissey, Brendan, Letters, Los Angeles Times (18 February 
2002), http : / /www . lat ime s . com/news/printededit ion/ calif ornia/la-0000 1 2467feb 1 8 . 
story . 

Kosko contends that the film "A Beautiful Mind" gives an incorrect example to explain what a 
Nash equilibrium is. The Nash character claims that the optimal strategy for him and others in 
a bar who desire a blonde there is to pursue the accompanying brunettes, since the men can't 
all have the blonde. This can't  be an equilibrium because each man will switch to the blonde 
if the others pursue brunettes .  The accompanying letters offer a more typical example of Nash 
equilibrium (in marketing) and a critique of an analogy used by Kosko. 

Netzer, Greg, A better golf ball, New York Times Magazine (9 December 200 1 )  58, 60; 
http : / /www . nyt ime s . com/200 1 / 12/09/magazine /09GOLFBALL . html . 

By the time you read this, the new Callaway HX golf ball should be in pro shops. The dimples on 
golf balls reduce drag on the ball; on current balls, dimples cover 65-7 5% of the !1fea of the ball. 
In l 999 a researcher at Callaway found a pattern of dimples that covered 86% (hmmm . . .  did he 
consult N.J.A. Sloane's  catalog of sphere coverings at http : I /www . research . att . com/�nj as 

/ i cosahedral . code s / index . html ?).  The new ball, however, has no circular dimples but in
stead is covered with ridges surrounding pentagonal and hexagonal regions (quick: if pentagons 
and hexagons tessellate the sphere edge-to-edge, exactly how many are pentagons?*).  The new 
ball meets U.S .G.A. specifications and is claimed (of course) to sail farther. 

* HINTS : 1 .  The question claims that the answer is the same for all tessellations; assuming that 
the claim is correct, you can deduce the answer by considering a familiar polyhedron that has 
no hexagons .  2. For a proof, count the edges two ways and apply Euler's relation among the 
numbers of vertices, edges, and polygons of a polyhedron. 
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Salsburg, David, The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth 
Century, W.H. Freeman, 200 1 ;  xi + 340 pp, $23.95. 
I teach statistics every semester, so I was eager to dip into this book and see if it would provide 
good supplementary reading for me or even be suitable reading for students to complement the 
technique orientation of the usual textbook. The book takes the interesting tactic of describing 
the "statistical revolution in twentieth-century science"-from deterministic models of reality 
to statistical ones-"in terms of statisticians involved in that revolution." The book is enriched 
by the fact that the author (a statistician formerly in pharmaceutical research and a Fellow of the 
American Statistical Society) knows or knew many of those individuals .  I found the book easy 
reading, learned some things I had not known, and found a few gems to enliven classes ;  but the 
fare was lighter than I would have preferred, and not because there is not a formula nor even 
a sigma of symbolic notation anywhere in the book. I think I was hoping for less biography 
and more subtle insights. Perhaps others too will pine for a bit more depth. An example of thin 
exposition is on p. 289, where two-thirds of a page is devoted to Efron's  bootstrap method; 
but we are not told what it is, what it is for, nor even what the "standard methods" are that it 
is "equivalent to." We do learn that it is "based on two simple applications of the Glivenko
Cantelli lemma" (that part was news to me) .  Overall, I had the impression of having taken a 
whirlwind tour of sights without being told by the guide just what some of them were or why 
we toured them. 

Peterson, Ivars, Mathematical Treks: From Surreal Numbers to Magic Circles, MAA, 2002; x 
+ 170 pp, $24.95 (P) ($ 19.95 to MAA members) .  ISBN 0--88385-537-2. 
Science News's debut on the Web allowed the weekly magazine to post there more material than 
could fit in its printed edition, including a weekly column on mathematics by Ivars Peterson. 
His columns are available at the MAA Website, and this book collects updated versions of the 
columns of the first year and a half. They are crisp vignettes, complete with references, on a vast 
variety of mathematical topics ;  though shorter, they carry on the tradition of Martin Gardner's  
former "Mathematical Games" column in Scientific American. 

Yandell, Benjamin H. ,  The Honors Class: Hilbert's Problems and Their Solvers, A K Peters, 
2002; ix + 486 pp, $39. ISBN 1-5688 1-141- 1 .  
Hermann Weyl wrote that b y  solving one o f  the famous problems identified b y  David Hilbert 
in his 1900 address to the Second International Congress of Mathematicians, a mathematician 
"passed on to the honors class of the mathematical community." It is a small class.  This book 
follows the "progress of the problems. Who worked on them? Who solved them? How were 
they solved? Which have not been solved? And what developed in twentieth century mathe
matics that Hilbert left out?" The book is intended for both mathematical and nonmathematical 
readers; the latter are advised that when they come to something that they don't understand, 
they should just keep reading and "pretend you are reading Moby Dick and you've come to an
other section on whaling." There are endnotes (citing sources for quotations), photographs, and 
even a few mathematical expressions; and Hilbert's address (translated) is reprinted. The result 
is a book that will delight both of the intended audiences and provide an overview of important 
contributions of twentieth-century mathematics. 

Peterson, Ivars, Fragments of Infinity: A Kaleidoscope of Math and Art, Wiley, 200 1 ;  vii + 
232 pp, $29.95. ISBN 0--47 1-16558- 1 .  
This book i s  devoted to art inspired b y  mathematics; it contains more lustrous photos (includ
ing eight pages of color plates), figures, and illustrations than pages.  It touches on origami, 
quasicrystals, Costa surfaces, Escher, and variations on Mobius strips, among other topics .  You 
may wish that your nonmathematical friends would read Yandell's The Honors Class (above), 
but this is the book that they won't stop looking through. 
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Problems 

1 .  Each of eight boxes contains six balls. Each ball has been colored with one of n 
colors, such that no two balls in the same box are the same color, and no two colors 
occur together in more than one box. Determine, with justification, the smallest 
integer n for which this is possible. 

2. Let ABC be a triangle and let w be its incircle. Denote by D1 and £1 the points 
where w is tangent to sides BC and AC, respectively. Denote by D2 and £2 the 
points on sides BC and AC, respectively, such that C D2 = B D1 and C £2 = AE1 , 
and denote by P the point of intersection of segments AD2 and B E2 . Circle w 
intersects segment A D2 at two points , the closer of which to the vertex A is denoted 
by Q.  Prove that A Q  = D2 P .  

3 .  Let a ,  b, and c b e  nonnegative real numbers such that 

a2 + b2 + c2 + abc = 4. 

Prove that 

0 � ab + be + ca - abc � 2. 

4. Let P be a point in the plane of triangle ABC such that the segments P A, P B,  and 
PC are the sides of an obtuse triangle. Assume that in this triangle the obtuse angle 
opposes the side congruent to P A .  Prove that L B A C is acute. 

5. Let S be a set of integers (not necessarily positive) such that 

(a) there exist a , b E  S with gcd(a , b) = gcd(a - 2, b - 2) = 1 ;  
(b) if x and y are elements of S (possibly equal), then x2 - y also belongs 

to S.  

Prove that S is the set of all integers. 

6. Each point in the plane is assigned a real number such that, for any triangle, the 
number at the center of its inscribed circle is equal to the arithmetic mean of the 
three numbers at its vertices . Prove that all points in the plane are assigned the same 
number. 

Solutions 

Note: Each year the MAA publishes a book with multiple solutions, references, and 
results for both the USA Mathematical Olympiad and the International Mathemat
ical Olympiad. The first book in that series, USA and International Mathematical 
Olympiads 2000, is available now from the MAA, and the second, USA and Inter-

1 54 



VOL.  75,  NO. 2 ,  APRI L 2 002 1 5 5 

national Mathematical Olympiads 2001 will be published after the 42nd International 
Mathematical Olympiad this summer. 

1 .  The smallest such n is 23 . 
We first show that n = 22 cannot be achieved. 
Assume that some color, say red, occurs four times. Then the first box containing 

red contains 6 colors, the second contains red and 5 colors not mentioned so far, 
and likewise for the third and fourth boxes. A fifth box can contain at most one 
color used in each of these four, so must contain 2 colors not mentioned so far, and 
a sixth box must contain 1 color not mentioned so far, for a total of 6 + 5 + 5 + 
5 + 2 + 1 = 24, a contradiction. 

Next, assume that no color occurs four times; this forces at least four colors to 
occur three times. In particular, there are two colors that occur at least three times 
and which both occur in a single box, say red and blue. Now the box containing 
red and blue contains 6 colors, the other boxes containing red each contain 5 colors 
not mentioned so far, and the other boxes containing blue each contain 3 colors not 
mentioned so far (each may contain one color used in each of the boxes containing 
red but not blue) . A sixth box must contain one color not mentioned so far, for a 
total of 6 + 5 + 5 + 3 + 3 + 1 = 23, again a contradiction. 

We now give a construction for n = 23. We still cannot have a color occur four 
times, so at least two colors must occur three times. Call these red and green. Put 
one red in each of three boxes, and fill these with 15 other colors . Put one green in 
each of three boxes, and fill each of these boxes with one color from each of the 
three boxes containing red and two new colors . We now have used 1 + 15 + 1 + 
6 = 23 colors, and each box contains two colors that have only been used once so 
far. Split those colors between the last two boxes. The resulting arrangement is : 

1 3 4 5 6 7 
1 8 9 10  1 1  1 2  
1 1 3  1 4  1 5  1 6  17  
2 3 8 1 3  1 8  1 9  
2 4 9 14 20 2 1  
2 5 10  1 5  22 23 
6 1 1  1 6  1 8  20 22 
7 1 2  17  1 9  2 1  23 

2. The key observation is that segment D1 Q is a diameter of circle w. Let 1 be the 
center of circle w, that is, 1 is the incenter of triangle ABC.  Extend segment D1 / 
through I to intersect circle w again at Q', and extend segment A Q' through Q' 
to intersect segment BC at D' . We show that D2 = D', which in tum implies that 
Q = Q', that is, D1 Q is a diameter of w. 

Let .e be the line tangent to circle w at Q', and let .e intersect segments AB and 
AC at B1 and C" respectively. Then w is an excircle of triangle AB1 C1 • Let H1 
denote the dilation with center A and ratio AD' fA Q' .  Since .e ..l D1 Q' and B C ..l 
D1 Q, .e II BC.  Hence, AB/AB1 = ACJAC1 = AD'/A Q'. Thus, H1 (Q') = D', 
H 1 ( B 1 ) = B ,  and H 1 ( C 1 ) = C .  It also follows that the ex circle Q of triangle ABC 
opposite vertex A i s  tangent to side BC at D'. 

We compute B D'. Let X and Y denote the points of tangency of circle Q with 
rays AB and AC, respectively. Then by equal tangents, AX = AY ,  BD' = BX, 
and D'C = YC .  Hence, 

AX ::::: AY  = ! <AX + AY)  

= ! <AB + BX + YC + CA) = ! <AB + BC + CA) . 
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It follows that BD' = BX = AX - AB = � (BC + CA - AB) .  It i s  well known 

that CD1 = � (BC + CA - AB) .  Hence BD' = CD1 . Thus, BDz = BD1 -
DzD1 = DzC - DzD1 = D1C = BD', that is, D' = Dz ,  as claimed. 

Now we prove our main result. Let M1 and Mz be the midpoints of segments BC 
and C A,  respectively. Then M1 i s  also the midpoint of segment D 1  Dz , from which 
it follows that I M1 is the midline of triangle D 1 Q Dz .  Hence, 

QDz = 2/MI 

and ADz I I  M1 / .  Similarly, we can prove that B Ez I I  Mz/ .  

( 1 )  

Let G be  the centroid of triangle ABC .  Thus, segments AM1 and B Mz intersect 
at G. Define transformation Hz as the dilation with center G and ratio - 1 /2. Then 
Hz(A) = M1 and Hz (B) = Mz. Under the dilation, parallel lines go to parallel 
lines and the intersection of two lines goes to the intersection of their images .  Since 
ADz II M1 / and B Ez II Mz / ,  H maps lines ADz and BE2 to lines M1 / and Mz/ ,  
respectively. It also follows that Hz (P) = I  and that i Mi fA P  = GMi fAG = 1 /2, 
or A P = 2/ M1 . Combining the last equality with ( 1 )  yields A Q  = AP - QP = 
2/MI - QP = QDz - QP = PD2 , as desired. 

3. From the condition, at least one of a, b, and c does not exceed 1 ,  say a :=:: 1 .  Then 

ab + be +  ca - abc = a (b + c) +  bc( l - a) 2: 0. 

To obtain equality, we have a (b + c) =  bc( 1 - a) = 0. If a = 1, then b + c = 0 or 
b = c = 0, which contradicts the given condition az + bz + cz + abc = 4. Hence 
1 - a ¥= 0 and only one of b and c is 0. Without loss of generality, say b = 0. 
Therefore b + c > 0 and a = 0. Plugging a = b = 0 back into the given condition 
gives c = 2. By permutation, the lower bound holds if and only if (a ,  b, c) is one 
of the triples (2, 0, 0) , (0, 2, 0) , and (0, 0, 2) . 

Now we prove the upper bound. Let us note that at least two of the three numbers 
a, b, and c are both greater than or equal to 1 or less than or equal to 1 .  Without 
loss of generality, we assume that the numbers with this property are b and c. Then 
we have ( 1 - b) ( 1 - c) 2: 0. 

The given equality az + b2 + cz + abc = 4 and the inequality b2 + c2 2: 2bc 
imply a2 + 2bc + abc :=:: 4,or bc(2 + a) :=:: 4 - az . Dividing both sides of the last 
inequality by 2 + a  yields be :=:: 2 - a .  
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It follows that 

ab + be + ac - abc ::: ab + 2 - a + ac(l  - b) 

= 2 - a ( l  + be - b - c) = 2 - a ( l  - b) ( l  - c) ::: 2, 

as desired. 
The last equality holds if and only if b = c and a ( l  - b) ( l  - c) = 0. Hence, 

equality for the upper bound holds if and only if (a , b, c) is one of the triples 

( 1 ,  1 , 1 ) ,  (0, v'l, Vl), (Vl, 0, Vl), and (Vl, v'l, 0) . 

4. By the Cauchy-Schwarz Inequality, 

J P B2 + PC2J AB2 + AC2 ::0: P B · AC + PC ·  AB .  

Applying the Generalized Ptolemy's Inequality to quadrilateral AB PC yields 

P B · AC + PC . AB  ::: P A ·  BC.  

Because P A i s  the longest side of  an obtuse triangle with side lengths P A, P B ,  
PC, we have PA > J P B2 + PC2 and hence 

PA . BC ::: JPB2 + PC2 .  BC.  

Combining these three inequalities yields J AB2 + AC2 > BC, implying that 
angle BAC is acute. 

5. In the solution below we use the expression S is stable under x � f(x) to mean 
that if t belongs to S, then f(t) also belongs to S. If c, d E S, then by condition 
(b), S is stable under x � c2 - x and x � d2 - x. Hence, it is stable under x � 
c2 - (d2 - x) = x + (c2 - d2) .  Similarly, S is stable under x � x + (d2

- c2) .  
Hence, S i s  stable under x � x + n and x � x - n ,  whenever n i s  an integer 
linear combination of finitely many numbers in T = {c2 - d2 

1 c, d E S} .  
By condition (a), S =I= 0 and hence T =1= 0 as  well. For the sake of contradiction, 

assume that some p divides every element in T. By condition (b), a2 - a ,  b2 - b E 
S. Therefore, p divides a2 - b2 , x1 = (a2 - a)2 - a2 , and x2 = (b2 - b)2 - b2 . 
Because gcd(a , b) = 1 ,  both gcd(a2 - b2 , a3 ) and gcd(a2 - b2 , b3 ) equal 1 ,  so p 
does not divide a3 or b3 • But p does divide x1 = a3 (a - 2) and x2 = b3 (b - 2) , so 
it must divide a - 2 and b - 2. Because gcd(a - 2, b - 2) = 1 by condition (a), 
this implies p I 1 ,  a contradiction. Therefore our original assumption was false, and 
no such p exists . 

It follows that T =I= {0} .  Let x be an arbitrary nonzero element of T .  For each 
prime divisor of x , there exists an element in T which is not divisible by that prime. 
The set A consisting of x and each of these elements is finite. By construction, 
m = gcd{y I y E A } = 1 ,  and m can be written as an integer linear combination of 
finitely many elements in A and hence in T .  Therefore, S is stable under x � x + 1 
and x � x - 1 .  Because S is nonempty, it follows that S is the set of all integers. 

6. Let A ,  B be arbitrary distinct points, and consider a regular hexagon ABCDEF 
in the plane. Let lines CD and FE intersect at G. Let .e b e  the line through G 
perpendicular to line ED. Then A , F, E and B,  C, D are symmetric to each other, 
respectively, with respect to line .e . Hence triangles C E G and D F G share the same 
incenter, that is, c + e = d + f ;  triangles ACE and B D F share the same incenter, 
that is, a +  c + e = b + d + f . Therefore, a =  b, and we are done. 
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